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ABSTRACT
This research investigates how Artificial Intelligence (AI) and Machine Learning
(ML) forecasting methodologies can be leveraged for cold chain capacity planning,
specifically utilizing Prophet and Seasonal Autoregressive Integrated Moving Aver-
age parametrized through grid search. In collaboration with Americold, the world’s
second-largest refrigerated logistic service provider, the study explores the challenges
and opportunities in applying AI/ML techniques to complex operations covering
385 customers and a capacity of 73,296 pallet positions. We train and test several
AI/ML and traditional statistical models using extensive data for every customer
over 3.5 years. Based on the results, MAPE of 5% was achieved on the whole site
level, and SARIMA outperformed ML models in most cases. Next, we show that
developing and applying a Customer Segmentation Matrix has enabled more accu-
rate forecasting and planning across various customer segments, addressing the issue
of forecasting inaccuracies. This approach effectively improves forecasting inaccura-
cies, underscoring the significance of tailoring AI/ML models for demand forecasting
within the cold-chain industry. Ultimately, this research presents an AI-driven ap-
proach that transcends mere forecasting, offering a practical pathway to manage
capacity in light of the constraints.
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1. Introduction

A ”cold chain” is a logistical process that involves the transportation and storage of
temperature-sensitive products within a specific temperature range to maintain their
quality and safety. It includes a series of temperature-controlled processes from raw
material acquisition to the delivery of products to end consumers (Khan and Ali 2021).
Also, the ever-increasing demand for fresh agricultural products, pharmaceuticals, and
biotechnological goods requires efficient and reliable cold chains (Yu and Xiao 2021).
The deterioration of fresh food can lead to substantial economic losses and food safety
issues (Wang and Zhao 2021). Cases of mishandling have resulted in significant product
losses, like temperature-sensitive food items being discarded due to inadequate stor-
age conditions (Tsang et al. 2018; Nerbovig 2017). The significance of the cold chain
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becomes even more apparent when preservation during long-distance transportation
results in approximately 40% value loss in fruit and vegetable (Negi and Anand 2015).
Such losses not only impact the economic viability of businesses but also highlight
the critical need for effective cold chains in preserving product quality and minimiz-
ing waste (Yu and Xiao 2021). Hence, to address these challenges, cold chains have
emerged as a solution, employing temperature-controlled activities to slow down the
deterioration of perishable items, attract safety-conscious consumers, and ensure food
safety.

Capacity planning in cold chains is a complex task for several reasons. First, the
products of cold chains typically possess shorter shelf lives and are highly susceptible
to environmental factors such as temperature, humidity, and lighting intensity (Gorm-
ley, Brennan, and Butler 2000). Maintaining precise environmental conditions becomes
paramount throughout the cold chain, requiring advanced refrigeration and dehumid-
ification systems (Tsang et al. 2018). The real complexity arises from the broad range
of ambient temperatures required, spanning from -25°C to +10°C, depending on the
product type (Lana, Tijskens, and Van Kooten 2005; Soyer et al. 2010). This means
different types of food products have varying temperature requirements. Perishable
items like dairy, seafood, and fresh produce require different storage conditions, mak-
ing it challenging to maintain consistent temperatures across the cold chain. Second,
food safety regulations mandate strict temperature controls (Weng et al. 2015). Non-
compliance can lead to legal consequences, recalls, and damage to a company’s reputa-
tion. Third, most items within the cold chain typically consist of fresh agricultural or
perishable products, which inherently come with extended supply lead times that are
difficult to adjust due to environmental factors (Behzadi et al. 2018). Due to the vast
distance between the production base and the target market in cold chains, the lead
time is not only long but also usually quite unstable (Cai et al. 2013). Also, managing
activities such as harvesting, post-harvest processes, packing, processing, storage, and
transportation can be highly challenging due to sudden surges in supply. This indi-
cates that implementing a cold chain involves a long lead time and significant capital
investment in refrigeration and preservation equipment (Behzadi et al. 2018; Wang
and Zhao 2021). This gets more challenging since seasonal demand fluctuations and
changes in consumer preferences can lead to uneven demand patterns, complicating
inventory management and cold chain logistics (Prentice and McLachlin 2008).

Above all challenges, the profit margins in this domain tend to be relatively narrow
which highlights the necessity for effective capacity management practices and the
utilization of contemporary decision-making technological solutions (Soto-Silva et al.
2016). As a result, many firms, like Driscoll’s, outsource cold chain services to logistic
service providers (LSPs) to reduce operational costs and allow agri-product suppliers
and retailers to focus on their core business activities (Yu and Xiao 2021; Mariappan
et al. 2023). This means the role of cold chain logistics service providers (LSPs) cannot
be overlooked in ensuring the seamless functioning of cold chains. These specialized
LSPs bring expertise and dedicated resources, playing a crucial role in the successful
implementation and management of temperature-controlled activities, which are es-
sential for maintaining the integrity and quality of perishable items throughout the
cold chain.

Additionally, the significance of cold chains goes beyond cost savings, where the lack
of cold chains results in substantial value and quality losses (Yu and Xiao 2021). Recall
the case of Driscoll’s and Americold; the investments made in refrigeration facilities
are pivotal in maintaining the quality and freshness of their products throughout
the entire supply chain (Wang and Zhao 2021). Americold, a prominent refrigerated
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Logistic Service Provider (LSP), invests significantly in procuring and maintaining
such facilities (Wang and Zhao 2021). These investments are crucial for maintaining
the freshness and integrity of perishable goods during their journey through the supply
chain.

Given the distinct characteristics of cold chains, the task of capacity planning be-
comes a daunting task. On the one hand, the time-sensitive nature and perishability
of products within cold chains require prompt transportation and storage to mitigate
spoilage and maintain product quality (Gormley, Brennan, and Butler 2000). This
means the insufficient capacity of cold chains could cause significant economic losses
and even lead to legal ramifications, product recalls, and reputational damage (Tsang
et al. 2018; Nerbovig 2017). Furthermore, in contrast to the relatively rapid capacity
adjustments in conventional supply chains, the process of modifying capacity within
cold chains is arduous and time-intensive. This stems from the extensive investments
required for advanced refrigeration and dehumidification systems required for storing
and transporting temperature-sensitive goods (e.g., Wang and Zhao 2021; Dai et al.
2020). On the other hand, excessive under-utilization of capacity within cold chains is
expensive, given the substantial investments necessary for these specialized systems.

In summary, recognizing the significant consequences of over-utilization and
under-utilization in cold chains, accurate demand forecasting is vital in optimizing
operations and capacity planning within these chains. Moreover, accurate demand
forecasting ensures the timely transportation and storage of perishable and time-
sensitive items in cold chains, thereby preventing wastage and upholding product
quality. In other words, demand forecasting for highly constrained operations requires
advanced techniques. This is because traditional forecasting methods, often relying
on regression models adjusted with historical data, frequently deliver less accurate
forecasts than newer approaches like AI and ML. AI/ML models excel in identifying
complex non-linear patterns and exploring relationships with seemingly unrelated
external data sources, resulting in improved decision-making across various sectors
(Hastie et al. 2009). Adopting these advanced algorithms has successfully enhanced
decision quality in diverse managerial contexts (Brynjolfsson and McAfee 2014;
LeCun, Bengio, and Hinton 2015). Hence, state-of-the-art Artificial Intelligence (AI)
and Machine Learning (ML) forecasting methods can effectively address the unique
complexities of the cold chain. By applying AI/ML techniques, the primary objective
is to enhance demand forecasting accuracy, optimize capacity planning, and improve
overall cold chain operations.

Hence, we formulate our research question as follows:

• Research Question: How can AI/ML forecasting methodologies be leveraged
for cold chain capacity planning?

To address the research question, we develop a novel forecasting framework metic-
ulously designed for capacity planning in cold chains, which is necessary to ensure the
quality of temperature-sensitive food products. The foundation of our study lies in a
comprehensive review of existing literature on food cold chain management, demand
forecasting methods, and qualitative interviews with key stakeholders within a real
case study.

In our forecasting approach, we utilize two distinct modeling techniques: Seasonal
Autoregressive Integrated Moving Average (SARIMA) and Facebook Prophet (FP).
We selected SARIMA due to its well-established power and widespread application
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among both researchers and practitioners. SARIMA models offer an interpretability
advantage and are based on established statistical principles. Their capability to handle
time series data characterized by clear seasonal patterns makes them particularly suit-
able for the cold chain context. Conversely, AI/ML models, such as Facebook Prophet
(FP), excel in detecting intricate non-linear patterns and uncovering relationships
with seemingly unrelated external data sources. This proficiency results in enhanced
decision-making across various sectors (Hastie et al. 2009). To measure the accuracy
of our models, we utilize the Mean Absolute Percentage Error (MAPE) performance
metric. The insights of our forecasting models are invaluable, enabling us to propose
the creation of additional freezer capacity at the selected site of the case study. Addi-
tionally, we identify underutilized space in the cooler segments that could potentially
be utilized to increase freezer capacity, thereby optimizing resource utilization.

As a real case study, we collaborate with Americold, the world’s second-largest
refrigerated logistics service provider (LSP), the 2021 IARW Global Top 251 list by
the Global Cold Chain Alliance. Americold specializes in the ownership, operation,
acquisition, and development of temperature-controlled warehouses, managing a vast
network of 250 facilities across North America, Europe, Asia-Pacific, and South Amer-
ica, with an impressive overall capacity of approximately 1.5 billion cubic feet and a
revenue of $2.7 billion, as reported in the Form 10-K of Americold Realty Trust in
20212. By selecting a specific warehousing site as our minimum viable product, we
extract extensive inventory data for every customer over a 3.5-year period. Leveraging
this data, we propose segmentation criteria based on customer inventory size and vari-
ability (operationalized by the Coefficient of Variation for customer demand), enabling
us to develop accurate forecasting models tailored to each segment.

Overall, our findings highlight the significance of AI/ML techniques in cold chains to
manage temperature-sensitive food supply chains effectively. In line with the core idea
that there is not a single universal algorithm or model that excels above all others
(commonly referred to as the ”no free lunch” principle), the results of this study
also demonstrate that certain algorithms perform better than others based on the
characteristics of the SKUs and customer segmentation. The managerial implications
provided by the framework provide valuable guidance that can be beneficial for making
decisions about selecting forecasting models and planning for capacity.

The subsequent sections of this paper are structured as follows. We review the
related literature concerning cold chains and the integration of novel technologies like
AI/ML models within this domain. Following this, we elaborate on the methodology
employed and detail the procedure for data collection. Finally, we end this paper by
proposing the framework and discussing the results.

2. Literature Review

In this section, we examine the relevant literature. First, we review the papers related
to cold chains and emphasize the attributes that differentiate cold chains from other
supply chains. Next, we discuss the adoption of technologies in cold chains and dynamic
capacity planning. Following that, we analyze studies closely related papers to our
research that employ AI/ML models in the context of cold chain or fresh food supply
chains. The review of these sections will help us to pinpoint the research gap and
position the current study.

1https://www.coldchainconference.org
2https://ir.americold.com/financials/sec-filings/default.aspx
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2.1. Cold Chains

A cold chain refers to a systematically engineered process in which refrigerated or
temperature-sensitive products are stored, transported, distributed, and sold in con-
trolled low-temperature environments to ensure product quality and safety (Mohsin
and Yellampalli 2017; Cang and Wang 2021; Meng et al. 2022). In the past decade,
there has been significant attention to cold chains due to their expanding range of
applications (Zheng et al. 2021). Cold chains have unique characteristics, one of which
pertains to the types of items they handle. Typically, these supply chains deal with
perishable and temperature-sensitive items like vegetables, fruits, fresh meat, fish,
shrimp, and other raw foods (Meng et al. 2022). The quality of these products is a
critical factor and a fundamental criterion for consumers’ choices (Cang and Wang
2021). This means ensuring the preservation of freshness and product quality neces-
sitates tighter delivery timeframes and controlled storage conditions, which lead to
higher end-product quality and reduced losses due to spoilage (Soto-Silva et al. 2016;
Dabbene, Gay, and Sacco 2008). Additionally, cold chains face the challenge of long
and often unpredictable transportation times due to the considerable distance between
the production source and the target market (Behzadi et al. 2018; Cai et al. 2013).
This extended lead time makes fresh products susceptible to decay and deterioration.
Moreover, end consumers are highly sensitive to both the retail price and the fresh-
ness of the products, leading to uncertain market demand (Cang and Wang 2021; Cai
et al. 2013). Hence, these challenges underscore the critical role that cold chains play
in preserving product quality and pricing, highlighting their complexity compared to
other supply chains (Cai et al. 2013).

Numerous logistical models related to cold chains have been extensively examined
in existing literature (e.g., Cai et al. 2013; Khodaee, Kayvanfar, and Haji 2022; Zheng
et al. 2021; Jedermann et al. 2014). For instance, Jedermann et al. (2014) conducted
an assessment of technical remedies and implementations to track the shelf-life of
perishable commodities in cold-chain food logistics. Their study also focused on de-
vising subsequent chain operations to curtail product wastage throughout the food
distribution process.

Cold chains exhibit unique attributes that can lead to elevated CO2 emissions.
For instance, these chains involve the preservation and movement of products at low
temperatures, typically at or below freezing levels (Saif and Elhedhli 2016). This pre-
requisite mandates the utilization of refrigerated warehouses and vehicles, which con-
sume significant energy for refrigeration, potentially amplifying the carbon footprint.
Within this context, Saif and Elhedhli (2016) introduce a novel mathematical model
for devising cold supply chains with environmental concerns in mind. This model ac-
counts not only for CO2 emissions arising from energy consumption but also includes
the effects of refrigerant gas leakage. In the context of E-commerce, Rodŕıguez Garcia
et al. (2023) presents a framework for organizing operational costs in retail and ware-
house e-fulfillment strategies, enabling brick-and-mortar grocery retailers to evaluate
their advantages and disadvantages. Applying the Time-Driven Activity-Based Cost-
ing (TDABC) methodology, the framework is informed by insights from two prominent
European supermarkets employing these strategies.

Studies have highlighted that product perishability in cold chains plays a critical role
in shaping logistics operations and the design of distribution networks Hasani, Zegordi,
and Nikbakhsh (2012); Van Kampen and Van Donk (2014); Dolgui et al. (2018); Viet,
Behdani, and Bloemhof (2020). This means the inherent complexity of managing the
cold chain for fresh fruits surpasses that of other supply chains (Soto-Silva et al. 2016).
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These complexities emphasize the importance of efficient management practices and
the integration of contemporary decision-making tools (Ahumada and Villalobos 2009;
Akkerman, Farahani, and Grunow 2010). In the context of food and grocery logistics,
Rodriguez Garcia et al. (2022) propose the building blocks for the value proposition
and logistics strategy of grocery pure players. The study demonstrates that including
fresh and frozen products in a retailer’s portfolio significantly impacts the fulfillment
process. Specifically, the authors highlight the effects on dispatch time slots, vehicle
types, delivery time windows, and the appropriate packing methods.

In a comprehensive literature, Soto-Silva et al. (2016) show that a majority of the
relevant research related to the cold-chain management of fresh fruits primarily focused
on the areas such as truck transportation, vehicle routing, production allocation, and
the planning and distribution network. Hence, there is a lack of studies focusing on
applying AI/ML forecasting techniques for capacity planning in cold chains (Behzadi
et al. 2018). This is the first study that not only proposes a new framework but also
tests the validity of the framework in a real case study. The proposed framework can
help to enhance the efficiency of cold chain operations, enabling accurate capacity
allocation and ensuring on-time deliveries, which is particularly vital in industries like
food and pharmaceuticals, where product quality and safety are important.

2.2. Technologies in Cold Chains

Some studies have investigated the adoption of new and disruptive technologies in cold
chains with a particular focus on fresh and agri-food items. For instance, Wu, Fan, and
Cao (2023) examines the approaches to integrating blockchain technology into the cold
chain associated with the supply of fresh products. They demonstrate that embracing
blockchain technology might not always be the most advantageous choice. This is be-
cause the outcome is tied to factors such as consumer acceptance of products without
blockchain technology, the rate of fresh product deterioration, and the distribution
of traceability costs among supply chain participants upon adopting blockchain tech-
nology. Li, Lee, and Gharehgozli (2023) examine and evaluate the primary blockchain
platforms utilized within cold chains that are related to food supply networks. Through
an exhaustive synthesis analysis, they explore the benefits and challenges linked with
blockchain technology. The study underscores that blockchain improves visibility at
every phase of the cold chain, increases transaction transparency, food safety, and
quality, and simultaneously alleviates concerns regarding food fraud and wastage. Ad-
ditionally, blockchain serves as a digital solution to reducing operational costs and
enhancing efficiency within food supply chains (Li, Lee, and Gharehgozli 2023).

Defraeye et al. (2021) examine how Digital Twins (DT) can be useful in managing
cold chains. They emphasize that DT provides valuable information to exporters,
retailers, and consumers. This information includes specifics on the time left before a
shipment’s products expire, which can guide decisions about logistics and marketing.
These technologies also help in spotting and predicting possible problems in supply
chains that might lead to reduced food quality and waste.

Anticipatory shipping (AS) tools have been used in the context of cold chains (Viet,
Behdani, and Bloemhof 2020). AS uses historical data to predict future orders and
deliver products to nearby distribution centers before customers order, balancing cus-
tomer demands and cost efficiency (Lee 2017). Viet, Behdani, and Bloemhof (2020)
apply AS for cold chains related to agro-food items, addressing product perishability
and imbalance issues. By integrating product quality data into analysis and optimiz-
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ing production and transportation processes, the research shows anticipatory shipping
can improve delivery service by up to 35.3% and cut costs by up to 9.3%, as validated
through simulations using a Dutch floriculture supplier’s data.

Internet of Things (IoT) devices offer valuable assistance in data collection by con-
tinuously and accurately gathering real-time information from various sources (Ko
et al. 2015). Considering the unique characteristics of cold chains, IoT plays a signifi-
cant role in simplifying processes such as gathering data, supervising product quality,
managing logistics, and enhancing payment efficiency (Ruan and Shi 2016). The IoT
devices enable real-time monitoring of temperature, humidity, and other critical pa-
rameters, ensuring the preservation of perishable goods and enhancing overall supply
chain visibility and efficiency. In this context, Tsang et al. (2021) present an IoT system
for planning deliveries with multiple temperature requirements (IoT-MTDPS). This
system incorporates a two-stage multi-objective genetic algorithm optimizer (2PM-
GAO). By utilizing IoT-MTDPS, the capacity to manage e-commerce orders is im-
proved while ensuring customer contentment at a specified standard. Hence, estab-
lished and continually expanding technologies such as the Internet of Things (IoT),
cloud computing, and Wireless Sensor and Actuator Networks (WSANs) have offered
unique opportunities to remotely control and monitor various regulated parameters
in cold chain with minimal human intervention (Mohsin and Yellampalli 2017). Feng
et al. (2019) employed a WSN network to dynamically monitor various quality pa-
rameters such as temperature, humidity, O2, and CO2 to enhance the safety of frozen
shellfish in the cold chain supply chain. Lastly, Torres-Sánchez et al. (2020) introduced
a real-time monitoring system that employed multiple non-linear regression techniques
to predict the shelf life of fruits and vegetables based on factors such as temperature,
relative humidity, and gas concentration.

Kinetic analysis, using past data and mathematical models or machine learning
tools, is a helpful tool in numerous fields and industries, helping make future plans
and strategies and generally forecasting. In the context of cold chains, Roduit et al.
(2019) employed an advanced kinetic analysis to forecast the shelf life of cold chain
items through the monitoring of time-temperature data using a data-logger. Wang
et al. (2015) introduced a monitoring and decision system that leveraged a wireless
sensor network (WSN) and an ontology-based knowledge representation approach to
evaluate the quality of cold chain products. The proposed approach interprets data
like temperature, humidity, and location directly obtained from sensors within a re-
frigerated truck to diagnose product status and trigger appropriate alerts.

2.3. Dynamic Capacity Planning

As noted in the literature, capacity planning plays an important role in improving
business performance in industries with high capital investment costs (Uzsoy, Fowler,
and Mönch 2018; Geng and Jiang 2009; Al-Shobaki and Mohsen 2008). Similarly, the
huge investments required for advanced refrigeration and dehumidification systems in
the cold chains industry (Dai et al. 2020; Behzadi et al. 2018), make capacity planning
very relevant. Precise demand prediction is crucial for making decisions like capacity
planning, labor scheduling, and production planning (Uzsoy, Fowler, and Mönch 2018).

Although studies have highlighted that forecasting is a crucial component of any
planning process, a comprehensive capacity planning process requires more than just
forecasting (Thomé et al. 2012; Noroozi and Wikner 2017; Grimson and Pyke 2007).
This is due to several reasons. First, forecasts are not always entirely accurate, par-
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ticularly given the frequent occurrence of black swan events (Taleb 2005) that are
drastically affecting supply chains currently (Ivanov, Dolgui, and Sokolov 2019; Dol-
gui, Ivanov, and Sokolov 2018; Dolgui and Ivanov 2021). Second, even without these
events, forecasts inherently lack the data points necessary for precise projections. For
example, traditional forecasting methods often struggle to capture and handle the
random fluctuations in demand effectively Huang, Chang, and Chou (2008). The inac-
curate forecasts, in turn, impact the accuracy and efficiency of subsequent production
scheduling and capacity planning (Huang, Chang, and Chou 2008). Third, even if a
company possesses every data point at the present moment, it would be unrealistic to
assume that each data point remains unchanged as inputs into a future forecast. In a
similar line, the famous phrase ”All models are wrong!” by Box (1976) is a common
sentiment and has become even more prevalent with these unexpected events.

Therefore, the primary goal of this paper is to develop a dynamic and compre-
hensive capacity planning framework designed for cold chains. This process extends
the demand forecasting process and includes the capacity to adjust and optimize re-
sources, such as storage, customer segmentation, and labor planning. The provided
framework considers various factors such as site-level forecasting, room-level forecast-
ing, and customer segmentation. This comprehensive approach is aimed at achieving
capacity planning that is both effective and flexible within the context of cold chain
logistics.

2.4. AI/ML Forecasting in Cold Chains

To the best of our understanding, a gap exists in utilizing AI/ML models for the ca-
pacity planning of cold chains. Previous research has predominantly focused on using
AI/ML tools in predicting time and monitoring temperature (Awad, Ndiaye, and Os-
man 2020; Aung and Chang 2014; Göransson, Jevinger, and Nilsson 2018). Mariappan
et al. (2023) use AI/ML techniques to predict shipment times in cold chains. They
analyze over 3 million real-world shipments from an e-pharmacy, creating a diverse en-
semble of AI/ML models for improved accuracy. Their approach outperforms existing
methods and proves effective for forecasting shipment times within the cold chain re-
lated to the e-pharmacy supply chain. He and Yin (2021) focus on cold chain logistics
in the Chinese market and develop demand prediction models using AI/ML models.
They use neural networks and grey prediction to study cold chain logistics demand.
The authors show the neural network algorithm has slightly better accuracy, making
it the preferred choice for demand forecasting in cold chain logistics management.
Cannas et al. (2023) explore the utilization of artificial intelligence (AI) in Opera-
tions and Supply Chain Management (OSCM) by analyzing empirical data from 17
AI applications within six Italian companies. The study assesses how AI applications
enhance various processes within OSCM and examines the advantages and challenges
companies encounter during their adoption.

In the food supply chain, Priyadarshi et al. (2019) show that AI/ML tools, precisely
the use of long short-term memory (LSTM) and support vector regression (SVR), for
demand forecasting of certain vegetables, leads to improved outcomes. These enhance-
ments are observed in terms of inventory turnover and days of stock coverage, which
aid in averting stock shortages and reducing supply chain volatility. Although the
results of the study cannot be generalized, they can still be used for forecasting vari-
ous agricultural products at the retail stage, taking into account the distinct demand
characteristics of each item. Haselbeck et al. (2022) compared nine modern AI/ML
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techniques with three traditional forecasting methods to predict horticultural sales.
The results consistently favored AI/ML models, especially XGBoost, which came out
on top in 14 out of 15 comparisons. Also, the authors demonstrate that including
additional external factors, such as weather and holiday information, as well as meta-
features, will improve the model’s accuracy. In addition, they examined whether the
algorithms could capture the sudden increase in demand of horticultural products dur-
ing the SARS-CoV-2 pandemic in 2020, and XGBoost outperformed all other models.

To the best our knowledge, there is an existing gap in leveraging AI/ML models
for capacity planning in cold chain logistics. This research introduces a novel AI/ML
framework and validates its efficacy through a practical case study. The framework is
based on a multi-level forecasting approach, which includes site-level, room-level, and
customer segmentation. The results highlight that capacity planning in the cold chain
is challenging; however, the framework can enable businesses to determine the right
inventory levels, optimize resource allocation, ensure timely deliveries, and enhance
cost efficiency. This is critical in time and temperature sensitive industries like food
and pharmaceuticals, where product quality and safety are essential.

3. Methodology

This section presents the methodology behind the proposed cold chain capacity plan-
ning framework. We start by describing the dataset, the implementation of AI/ML for
forecasting, the approach behind customer segmentation, and the eventual develop-
ment of the capacity planning framework. As previously discussed, there is a noticeable
gap of research that applies AI/ML techniques to the capacity planning of cold chains.
This study aims to bridge this gap by collaborating closely with Americold. Our ap-
proach involves an initial step of segmenting customers into four distinct quadrants,
which we achieve by utilizing the coefficient of variation (CV) and analyzing the in-
ventory levels occupied by each customer. This segmentation strategy allows us to
account for the diverse demand patterns exhibited by different customer segments.
Subsequently, we apply a range of AI/ML models to each customer segment, tailoring
our predictions to the unique requirements of each segment. Given the significant vari-
ations in demand patterns across different customer types, adopting a one-size-fits-all
prediction model is not feasible, and thus, our approach ensures that we deploy the
best-suited prediction model for each customer segment.

3.1. Data

To address the research question and test the proposed methodology, we collaborate
with Americold, the world’s second-largest refrigerated LSP. The company specializes
in the ownership, operation, acquisition, and development of temperature-controlled
warehouses, managing a vast network of 250 facilities across North America, Europe,
Asia-Pacific, and South America, with an impressive overall capacity of approximately
1.5 billion cubic feet and a revenue of $2.7 billion. The dataset under consideration
covers only one site with a total capacity of 73,296 pallet positions. The site contains
both cooling chambers, with a total capacity of 13,632 pallet positions, and freezing
chambers, with a total capacity of 59,664 pallet positions. The dataset covers the
period from 14 June 2019 to 19 February 2023 and includes 385 individual customers.

The comprehensive dataset from Americold, encompassing diverse customer profiles
and detailed transactional data over 3.5 years, offers a robust framework for assessing
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the efficacy of AI/ML models in the context of complex, real-world cold chain logistics,
making it highly suitable for the scope of our study.

3.2. Forecasting Algorithms

Forecasting is central to many activities within an organization. For instance, organi-
zations across all sectors of industry must engage in capacity planning to efficiently
allocate scarce resources and establish a mechanism to measure and track performance
in relation to a predefined baseline Taylor and Letham (2018). The algorithms under
consideration include SARIMA and Prophet. In the subsequent experiments, we aim to
juxtapose the performance of a state-of-the-art AI/ML forecasting algorithm, Prophet,
with that of SARIMA, a traditional and well-established approach. This comparison
elucidates the relative strengths and practical implications of advanced versus conven-
tional methodologies within the cold chain capacity planning context.

3.2.1. Seasonal Autoregressive Integrated Moving Average

ARIMA(p, d, q) model is described by Equation 1. In this formulation, p corresponds
to the order of the autoregressive component, d is the degree of differencing, and q is
an order of a moving average component (Box et al. 2015).

y′(t) = c+ ϕ1y
′(t− 1) + ...+ ϕpy

′(t− p) + θ1ϵ(t− 1) + ...θqϵ(t− q) + ϵ(t) (1)

where y′(t) = y(t) − y(t − 1) is the differenced series, the autoregressive component
of order p (AR(p)) is described by Equation 2, and the moving average component of
order q (MA(q)) is described by Equation 3.

y(t) = c+ ϕ1y(t− 1) + ...+ ϕpy(t− p) + ϵ(t) (2)

y(t) = c+ ϵ(t) + θ1ϵ(t− 1) + ...θqϵ(t− q) (3)

where ϵ(t) is a white noise (Hyndman and Athanasopoulos 2018). The ARIMA model
can be represented in a more compact way using the backshift operator By(t) =
y(t − 1). Using the backshift operator, the first-order difference can be transformed
into y′(t) = y(t)− y(t− 1) = y(t)−By(t) = (1−B)y(t), therefore Equation 1 can be
rewritten as Equation 4.

(1− ϕ1B − ...− ϕpB
p)(1−B)dy(t) = c+ (1 + θ1B + ...+ θqB

q)ϵ(t) (4)

This formulation is critical to define the seasonal extension of ARIMA (SARIMA).
SARIMA is formed by adding additional seasonal terms to the ARIMA models, which
can be represented as follows: SARIMA (p, d, q)(P,D,Q)m, where m corresponds to
the number of observations per year, for example, m = 52 in our study because we deal
with data aggregated by week (Hyndman and Athanasopoulos 2018). The lowercase
notation is for the non-seasonal parts of the model, and the uppercase notation is used
for the seasonal parts ones. For example, SARIMA (1, 1, 1)(1, 1, 1)52 corresponds to
Equation 5.

(1− ϕ1B)(1− Φ1B
52)(1−B)(1−B52)y(t) = (1 + θ1B)(1 + Θ1B

52)ϵ(t) (5)
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We selected the SARIMA model using an exhaustive grid search (Jiménez, Lázaro,
and Dorronsoro 2008).

3.2.2. Facebook Prophet

Prophet is a Bayesian AI/ML algorithm developed by Facebook’s Core Data Science
team. Prophet aims to decompose time-series data y(t) into three main components:
a trend component g(t), a seasonality component s(t), and a holiday effect compo-
nent h(t) (Taylor and Letham 2018). Our application doesn’t use h(t) due to the data
aggregation and the fact that the variability in capacity utilization during major hol-
idays can be captured within s(t). Therefore, the Facebook Prophet model is reduced
to a decomposable time-series (Harvey and Peters 1990) of the form described by the
Equation 6.

y(t) = g(t) + s(t) + ϵt (6)

where the error term, represented by ϵt, stands for any idiosyncratic changes not cov-
ered by the model. It is assumed within the model that ϵt follows a normal distribution.

This particular configuration bears a resemblance to a generalized additive model
(Hastie and Tibshirani 1987), which constitutes a group of regression models where
potentially nonlinear smoothers are applied to the regressors. In this context, only
time is used as a regressor, but potentially several linear and nonlinear functions of
time serve as components. The methodology of modeling seasonality as an additive
component echoes the approach employed by exponential smoothing, as detailed by
Gardner Jr (1985).

The trend is modeled as a piece-wise constant rate of growth (Equation 7).

g(t) = (k + a(t)⊺δ)t+ (m+ a(t)⊺γ) (7)

where k is the growth rate, m is the offset parameter. Adjustments vector a(t) with
the corresponding rates of adjustments δ and γ are responsible for the trend changes
and are defined below.

Trend changes are modeled by explicitly defining changepoints where the growth
rate is allowed to change. Given S changepoints at times sj , j = 1, . . . , S. A vector
of rate adjustments can be defined using δ ∈ RS , where δj is the change in rate that
occurs at the moments of time sj . The rate at t is then considered as the base rate
k, plus all of the adjustments up to that point, namely k+

∑
j:t>sj

δj . This procedure

can be represented by defining a vector a(t) ∈ 0, 1S according to Equation 8 (Taylor
and Letham 2018).

aj(t) =

{
1, if t ≥ sj ,

0, otherwise.
(8)

Based on that, the rate at time t can be calculated as k+ a(t)⊺δ. It is important to
note that When the rate k is adjusted, the offset parameter m must also be adjusted.
The adjustment at changepoint j is made using the coefficient γj that can be calculated
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according to he Equation 9 (Taylor and Letham 2018).

γj =

sj −m−
∑
l<j

γl

(1− k +
∑

l<j δl

k +
∑

l≤j δl

)
(9)

Facebook Prophet relies on the Fourier series (Harvey and Shepard 1993) to con-
struct a seasonal component s(t). Setting P as the regular period we expect the time
series to have, the arbitrary smooth periodic effects can be approximated according
to Equation 10:

s(t) =

N∑
n=1

(
an cos

2πnt

P
+ bn sin

2πnt

P

)
(10)

Fitting s(t) is conducted through estimating the vector of parameters β =
[a1, b1, ..., aN , bN ] (Taylor and Letham 2018). P = 52 in our case because we deal
with yearly data aggregated by week.

3.2.3. Validation

In planning capacity for the cold storage company, single-point forecasts are of little
utility, and it is essential to make forecasts over a certain horizon H.

Each of H estimates of the future data points is associated with some error. There-
fore, it is essential to specify empirical metrics that may serve to measure forecasting
accuracy, compare methods and track the performance of the forecasting model over-
time. Additionally, such a metric helps to diagnose how error-prone the forecasting
procedure is, which in its turn, allows capacity planning team to determine whether
the forecast is trustworthy at all and to which extent. Such a metric can be formally
defined as the empirical accuracy of a forecast of h ∈ (0, H] periods ahead of time T
(Equation 11).

ϕ(T, h) = d(ŷ(T + h|T ), y(T + h)) (11)

where ŷ(T + h|T ) represents a forecast for h steps ahead of T made using historical
observations up to time T and d(ŷ(T + h|T ), y(T + h)) is a distance metric used to
measure the forecasting accuracy (Taylor and Letham 2018).

We set the forecast horizon to 26 weeks in the following analysis (h = 26). As
highlighted by De Gooijer and Hyndman (2006), the choice of a distance metric must
be problem-specific. De Gooijer and Hyndman (2006) and Hyndman and Koehler
(2006) provide a detailed overview of error metrics suitable for forecasting. In our
study, we decided to focus on mean absolute percentage error (MAPE) presented in
Equation 12 and Root Mean Squared Error (RMSE) presented in Equation 13.

MAPE =
100%

T

T∑
t=1

yt − ŷt
yt

(12)

RMSE =

√∑T
t=1 (ŷt − yt)2

T
(13)
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In the field of AI/ML forecasting, mainly when applied to forecasting tasks within
supply chain and operations management, MAPE and RMSE stand out as two of
the most commonly adopted metrics (Chou et al. 2023; Chuang, Chou, and Oliva
2021; Zhu et al. 2021). MAPE, favored for its interpretability in AI/ML models, does
come with certain caveats. Notably, when actual values (yt) are zero or approaching
zero, MAPE can become infinite or severely skewed, a concern highlighted by (Gard-
ner 1990). Additionally, MAPE’s inherent structure means it penalizes positive errors
more than negative ones, introducing an asymmetry, as pointed out by Makridakis
(1993). However, in AI/ML applications where all data points are positive and signifi-
cantly distant from zero, these limitations become less consequential. As Hyndman and
Koehler (2006) concluded, under such conditions, MAPE remains a reliable metric.
On the other hand, RMSE is chosen in AI/ML forecasting models due to its alignment
with the data scale, making it particularly relevant for inventory management appli-
cations (Hopp and Spearman 2011). Yet, it is crucial to recognize RMSE’s sensitivity
to outliers (Hyndman and Koehler 2006). This fact means that in AI/ML models,
where data might have occasional extreme values, RMSE can be disproportionately
influenced.

In summary, while both MAPE and RMSE have their respective advantages and
challenges, their widespread adoption in AI/ML forecasting applications, especially
within the context of supply chain and operations management, underscores their
utility and relevance.

3.2.4. Prediction intervals from bootstrapped residuals and capacity breaks
estimation

As highlighted by Box (1976) ”All models are wrong!”. That is why the forecasting er-
rors and the corresponding prediction intervals are central for capacity planning under
uncertainty. A prediction interval for forecast ŷT+h|T can be written as ŷT+h|T ± cσ̂h,
where σ̂h is an estimate of the standard deviation of the h-step forecast distribution
and c is the multiplier to control the width of the interval (Hyndman and Athana-
sopoulos 2018).

In order to estimate σ̂h without making additional assumptions on the models and
the distribution of residuals, we build prediction intervals from bootstrapped residuals.
If forecast error is defined as et = yt − ŷt|t+1, we can solve it for yt and rewrite as
follows yt = ŷt|t+1 + et. In this setting, we can simulate the next observation of a
time series as follows yT+1 = ŷT+1|T + eT+1, where ŷT+1|T is the one-step forecast and
eT+1 is the future error (Thombs and Schucany 1990). Assuming future errors will be
close to past errors, eT+1 can be sampled from the past residuals. Adding the new
simulated observation to our data set, we can repeat the process to obtain yT+h =
ŷT+h|T +eT+h and subsequently σ̂h. As a result, if yT+h is viewed as a random variable
yT+h = X ∼ N(ŷT+h|T , σ̂h), its cumulative distribution function (CDF) corresponds
to the probability that the site’s total capacity or target capacity x will be sufficient
FX = P (X ≤ x) (Rohatgi and Saleh 2015). Based on that 1 − FX = P (X ≥ x)
corresponds to the probability that the site will break capacity. Figure 1 illustrates
the intuition behind this estimation. In a practical setting, the normality of residuals
has to be tested using the Anderson-Darling (Anderson and Darling 1954) Normality
test (or alternative test) prior to futher probabilistic reasoning.

At this stage, it is essential to once again explain the difference between total capac-
ity and target capacity. The total capacity is the theoretical maximum capacity of the
site restricted by the total cubic volume available across all the chambers. However, if
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Figure 1.: Probabilistic view of the capacity. The shaded area corresponds to the
probability that the site will break capacity x (1− FX = P (X ≥ x))

Figure 1 Alt Text: Graphical representation of a probabilistic view of site capacity,
with a shaded area indicating the likelihood of exceeding capacity.

the total capacity is reached, the picking and handling becomes substantially harder
to perform, which slows the operation and reduces the overall efficiency. That is why
in practical settings, the site uses the notion of target capacity (91% of the theoretical
maximum for Americold), which is the optimal upper bound that allows the site to
perform without jeopardizing its efficiency.

3.3. Customer Segmentation

We developed the Customer Segmentation Matrix inspired by the Growth Share Ma-
trix (also known as BCG matrix). The Growth Share Matrix is a two-by-two matrix
created by the Boston Consulting Group in the early 1970s as a tool to help com-
panies with the task of portfolio management (Reeves and Moose 2023). It allows
companies to manage different products in their portfolio based on two dimensions:
market growth rate and market share (Hax and Majluf 1983; Seeger 1984).

In our model, we replaced these factors with inventory size (which is a primary rev-
enue driver) and variability as our two main criteria for customer segmentation (Figure
2). To determine inventory size, we computed the average inventory during the anal-
ysis year. For variability, we utilized the Coefficient of Variation (CV) for outbound
demand. The CV is calculated by dividing the standard deviation by the mean, indi-
cating the dispersion around the mean. The lower the dispersion, the more stable and
potentially predictable the volume is on any given day. We selected outbound demand
for this metric as it is the most labor-intensive activity in a distribution center.

CV is a widely recognized metric in academia (Chou et al. 2023; Chuang, Chou, and
Oliva 2021; Zhu et al. 2021) and industry (Hopp and Spearman 2011) for measuring
volatility, especially in demand forecasting and inventory management. Its adoption
stems from its ability to provide a normalized measure of dispersion, allowing for
a more consistent comparison across different scales and units. This fact makes CV
particularly valuable in assessing the relative variability of demand patterns, aiding
businesses in making more informed inventory decisions.
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Figure 2.: Customer Segmentation Matrix inspired by the growth–share matrix.

Figure 2 Alt Text: Visual depiction of a Customer Segmentation Matrix, inspired by
the growth–share matrix, showcasing different customer groups.

These two dimensions are then used to classify products or business units into four
categories:

(1) High inventory / Low variability (Cash Cows). High revenue but usually lower
margins. The proposed business strategy is to allow customers to grow as much
as possible and reserve additional storage capacity if necessary.

(2) Low inventory / Low variability (Stars). Low revenue but usually high margins.
The proposed business strategy is to focus on the customers with the potential
to grow and become a “Cash Cow”.

(3) High inventory / High variability (Question Marks). These customers generate
high revenue but are hard to deal with due to the high variability and, therefore,
unpredictability. The proposed business strategy is to reduce variability through
commitment agreements and relationship management.

(4) Low inventory / High variability (Dogs). These customers don’t contribute much
to the revenue and are hard to deal with due to high variability. The proposed
business strategy is to charge them above-average tariffs and potentially remove
them to create space for more promising customers.

3.4. Capacity Planning Framework

The proposed capacity planning framework is designed in accordance with the prin-
ciples of CRISP-DM (Cross-Industry Standard Process for Data Mining), a well-
established, structured process model for planning and executing data mining projects
(Shearer 2000). The elements of the capacity planning framework for Cold Chain can
be connected with various stages of the CRISP-DM model as follows:

(1) Business Understanding: This phase delves deep into understanding the objec-
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tives and requirements of the project from a business perspective. In the context
of cold chain logistics, this is crucial due to the sensitivity of products and the
high costs associated with temperature deviations. Within the capacity planning
framework, this phase aligns with the literature review stage, which comprehends
the business problem of the cold chain industry’s intricacies. Feedback from in-
dustry experts further refines the understanding of business requirements and
objectives.

(2) Cold chain logistics is data-intensive, with variables like temperature, humid-
ity, and transit times playing pivotal roles. This phase involves the collection
and initial exploration of such data. Within the capacity planning framework,
it corresponds to the data analysis stage (segmentation and aggregation) and
qualitative interviews. These processes ensure a comprehensive understanding of
data, identifying data quality issues and exploring data properties and relation-
ships.

(3) Data Preparation: Given the critical nature of cold chain logistics, ensuring data
accuracy is paramount. This phase, in the CRISP-DM model, involves cleaning,
formatting, and integrating data. Within the capacity planning framework, this
aligns with the data validation phase, ensuring the data is accurate and primed
for further processing.

(4) Modeling: This stage is vital for predicting potential disruptions or inefficiencies
in the cold chain. It encompasses the selection and application of various models
to the prepared data. Within the capacity planning framework, this phase is
represented by developing and applying forecasting models tailored to cold chain
nuances.

(5) Evaluation: Ensuring that models are robust and can handle the complexities
of cold chain logistics is crucial. This stage in the CRISP-DM process involves
assessing the models against the business objectives and requirements identi-
fied earlier. Within the capacity planning framework, this aligns with the steps
involving exogenous factors and feedback from cold chain experts.

(6) Deployment: The final phase is where the rubber meets the road. In the con-
text of cold chains, accurate capacity planning can mean the difference between
product integrity and spoilage. Within the capacity planning framework, this
phase is represented by refining forecasting models to produce actionable busi-
ness insights. This step applies the model’s findings to make informed decisions,
ensuring optimal cold chain operations.

Connecting the elements of the capacity planning framework with the stages of the
CRISP-DM model ensures a structured and effective approach to data mining projects.

4. Results

The following section illustrates the application of the proposed framework for capacity
planning based on the real data provided by Americold. The section demonstrates how
customer segmentation and AI/ML forecasts could be streamlined to facilitate critical
decision-making regarding capacity planning.
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4.1. Forcasting-based Capacity Planning

Since historical data is available up to February 19, 2023, and the forecast horizon is
set to 26 weeks in the following analysis (h = 26), the forecast is made until August 20,
2023, for all the temperature controls and customer segments. This 26-week horizon has
been chosen in line with the capacity planning context. In industries where inventory
and storage play a pivotal role, having a medium-term outlook is crucial to ensure
optimal utilization of resources and to anticipate any potential challenges or changes
in demand (Gambaro et al. 2023). Furthermore, referring to the current managerial
practices of Americold, a 26-week forecast aligns well with their biannual review cycles,
allowing them to make informed decisions based on the most recent data and trends.
We first identify the most accurate AI/ML model based on the time-series cross-
validation. Table 1 summarizes the results for the whole site as well as for the freezer
and cooler.

The site has a total capacity of 73296 pallet positions and a target capacity of
66846 pallet positions. At this stage, it is essential to once again explain the differ-
ence between total capacity and target capacity. The total capacity is the theoretical
maximum capacity of the site restricted by the total cubic volume available across
all the chambers. However, if the total capacity is reached, the picking and handling
becomes substantially harder to perform, which slows the operation and reduces the
overall efficiency. That is why in practical settings, the site uses the notion of target
capacity (91% of the theoretical maximum), which is the optimal upper bound that
allows the site to perform without jeopardizing its efficiency.

The algorithm forecasts that on August 20, 2023, there should be customer demand
for 61598 pallet positions (ŷT+26|T ). Given the σ̂26 of 7162 pallet positions, calculated
using bootstrapped residuals, the probability of breaking the target capacity is 23.2%,
and the probability of breaking the total capacity is 5.1%. Taking these numbers into
consideration, the capacity planning team has to seriously consider expanding the site
or building a new one (Figure 3). The practical limitation of reaching maximum ca-
pacity must be underscored, owing to the management of customers via negotiations
and pricing strategies. Despite this constraint, the projected customer demand, cou-
pled with a 23.2% probability of breaking the target capacity and a 5.1% chance of
surpassing the total capacity, creates a critical situation. It could result in an inabil-
ity to accommodate new customers or necessitate charging existing customers beyond
standard rates to encourage their relocation to alternative sites. Such a scenario em-
phasizes the urgent need for the capacity planning team to contemplate either the
expansion of the current facility or the development of a new one.

The freezer chambers, in total, occupy enough space to allocate 59664 pallet posi-
tions, with the target capacity at 53630 pallet positions. It is essential to point out
that both the total and target capacity of a freezer increased on November 12, 2022,
because the site management decided to convert one of the cooling chambers into a
freezing one (Figure 4).
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Figure 3.: Forecast at site level performed by SARIMA m(12) (1,0,1) (1,1,1). The figure
contains the threshold for total and target capacities measured in pallet positions,
historical time-series data, 26-week forecast, and credible interval.

Figure 3 Alt Text: Graphical illustration of a site-level forecast using the SARIMA
m(12) (1,0,1)(1,1,1) model. The figure includes lines representing the threshold for
total and target capacities in pallet positions, historical time-series data, a 26-week
forecast projection, and a shaded credible interval for uncertainty estimation.
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Figure 4.: Forecast for freezer performed by Prophet. The figure contains the threshold
for total and target capacities measured in pallet positions, historical time-series data,
26-week forecast, and credible interval.

Figure 4 Alt Text: Chart illustrating a freezer capacity forecast conducted using the
Prophet model. Displayed are thresholds for total and target capacities in pallet posi-
tions, past time-series data, predictions for the upcoming 26 weeks, and a shaded area
indicating the credible interval for forecast uncertainty.
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The algorithm forecasts that on August 20, 2023, there should be customer demand
for freezing chambers equivalent to 53590 pallet positions. Given the sigma of 5320
pallet positions, calculated using bootstrapped residuals, the probability of breaking
the target capacity is 49.7%, and the probability of breaking the total capacity is 12.7%.
These projections underscore the significant risk of breaking the target capacity. In
the short term, the capacity planning team must contemplate converting one of the
cooling chambers to freezing as an immediate remedial measure. However, given the
statistical trends, it becomes evident that a long-term solution will necessitate not
merely a modification of the current infrastructure but an expansion of the existing
site or the construction of an entirely new facility.

The cooling chambers, in total, occupy enough space to allocate 13632 pallet po-
sitions, with the target capacity at 13216 pallet positions. Since one of the chambers
was converted to a freezer on November 12, 2022, both the total and target capacity of
a cooler decreased (Figure 5. The algorithm forecasts that on August 20, 2023, there
should be customer demand for cooling chambers equivalent to 8008 pallet positions.
Given the sigma of 3684 pallet positions, calculated using bootstrapped residuals, the
probability of breaking the target capacity is 7.9%, and the probability of breaking
the total capacity is 6.3%. Given the relatively modest risk of breaching capacity
thresholds for cooling chambers, the data reinforces the need to further adapt existing
facilities. Specifically, the conversion of one of the cooling chambers to freezing appears
justified and strategically aligned with projected demands.

Even though the analysis indicates a need to expand the site, it’s essential to rec-
ognize that the planning and construction process might extend over a year. This
timeframe emphasizes the urgency for immediate action. With the site hosting 385 in-
dividual customers, a one-size-fits-all approach is inappropriate since not all customers
equally impact the total revenue. Considering the capacity constraints, it becomes cru-
cial to further apply the capacity planning framework to enable the segmentation of
customers based on various criteria and facilitate decisive action. Decisions must be
made regarding which customers should be prioritized with reserved capacity and
which may need to be relocated to different sites, charged above the prevailing tariff,
or potentially even terminated. This strategic approach will optimize utilization and
align customer management with both immediate needs and long-term projections.
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Figure 5.: Forecast for cooler performed by SARIMA m(52) (0,1,0)(1,0,0). The figure
contains the threshold for totaland target capacities measured in pallet positions,
historical time-series data, 26-week forecast, and credible interval.

Figure 5 Alt Text: Graph demonstrating a cooler capacity forecast using the SARIMA
m(52) (0,1,0)(1,0,0) model. It features lines for the threshold of total and target capac-
ities measured in pallet positions, previous time-series data, a 26-week forecast path,
and a credible interval shaded to denote forecast reliability.
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4.2. Customer Segmentation

After setting up the local database and conducting the data cleaning procedures, we
were able to identify 385 individual customers who possessed stock at the site during
the period covered by the dataset. This posed a significant challenge since generating
385 distinct customer forecasts would result in significant forecasting inaccuracies and
render the outputs incomprehensible.

Segmenting was deemed crucial for generating useful forecasts for the organization
due to the presence of new customers annually and the overall large number of cus-
tomers. Using the Customer Segmentation Matrix described in Section 3.3 with the
data provided by Americold, we generated the output shown in Figure 6, where each
point represents all 385 customers in the data set. The Y-axis displays the average
pallets for the analysis year, which was identified as 2022 because the current date
was less than 6 months into 2023. In 2022, the largest customer had an average of
5,521 pallets on hand. The X-axis shows the CV for each customer in the dataset,
calculated across the entire data set.

To finalize the segmentation for each customer, three additional features were re-
quired for the proper scaling of the model. Firstly, we identified the storage temper-
ature for each customer item, which allowed us to categorize all items into Freezer,
Cooler, or Dry. Secondly, we identified customers within the multi-vendor consolida-
tion program (MVC).

Multivendor Consolidation (MVC) is a strategic approach in supply chain man-
agement where shipments from multiple vendors are consolidated into a single, larger
shipment (Glock and Kim 2014). It is particularly beneficial when a large retailer,
such as Walmart, sources products from various suppliers in the same region. By
employing MVC, companies like Americold assist low-volume customers in achieving
cost efficiencies and improved service levels. This consolidation not only reduces trans-
portation costs by transitioning from multiple Less Than Truckload shipments to more
cost-effective full truckloads but also ensures fewer delays, leading to consistent and
reliable delivery times. Such a strategy is crucial for meeting stringent requirements,
like Walmart’s on-time in-full (OTIF) standards (Bower 2021). Through MVC, suppli-
ers can also benefit from better transportation rates and services, fostering enhanced
relationships and ensuring smoother operations in complex retail environments.

Regardless of their category, customers were given an MVC program flag along with
the temperature stored. Lastly, we decided to treat key accounts individually due to
their importance to the company (e.g. key customer 1). Americold believes it was
important to track these customers individually due to their significance to the site.
With these features, we were able to reduce the total number of unique customers
from 385 to 12 actionable segmentation groups using this new customer segmentation
model (Figure 7).

The conducted segmentation allows us to forecast capacity utilization for each cus-
tomer individually. which is a game-changer in dealing with capacity shortages. Per-
forming the forecast for each customer segment individually uncovered some com-
pelling trends and patterns. Figures 8 and 9 provide us with a more detailed un-
derstanding of the cooler business, which can be used to develop effective business
strategies. Upon analyzing Figure 8, it is further evidence that the cooler business has
not shown growth over the last few years. The ”Low Inv-Low CV Cooler” segment, in
particular, has driven the flat to a negative growth trend that persists in the forecast.
This lack of growth highlights the potential need for strategic interventions to improve
the performance of this customer segment or find new customers that could help fill
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Figure 6.: Scatterplot showing average pallets in 2022 (Y-axis) vs. the Coefficient of
Variation (X-axis) for each customer within the data set overlayed with the customer
segments created (Low Inv/ Low CV, High Inv / Low CV, Low Inv / High CV, High
Inv / High CV).

Figure 6 Alt Text: Scatterplot illustrating the relationship between average pallets in
2022 on the Y-axis and the Coefficient of Variation on the X-axis for each customer in
the data set. The plot is segmented into four quadrants to show customer categories:
Low Inventory/Low CV, High Inventory/Low CV, Low Inventory/High CV, and High
Inventory/High CV, with distinct markers or colors for each segment.

the inventory positions available.
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Figure 7.: Final Customer Segmentation. Scatterplot showing average pallets in 2022
(Y-axis) vs. the Coefficient of Variation (X-axis) for each customer within the data
set, with each customer color-coded based on their customer segments.

Figure 7 Alt Text: Scatterplot depicting the final customer segmentation, with the
average number of pallets in 2022 on the Y-axis and the Coefficient of Variation on
the X-axis for each customer. Each data point is color-coded to represent different
customer segments, visually distinguishing the groups within the dataset.

In Figure 9, a significant finding was that the ”MVC Program FREEZER” customer
segment is projected to experience steady growth over the next 6 months. On the
other hand, the remaining customer segments are mostly expected to remain flat or
decline. These forecasted trends suggest that targeted interventions might be needed
to stimulate growth in the freezer customer segments that are expected to remain
flat. Overall, this analysis reveals important insights that can be leveraged to develop
effective business strategies.

Dry (ambient) customers account for the smallest portion of pallet positions. Ameri-
cold does not prioritize ambient customers strategically, and these pallet positions
were made available primarily because existing customers required a small amount of
ambient space. As of 03/01/2023, there are no more available Dry (ambient) pallet
positions, and there are no plans to create more in the future. Hence, don’t conduct
any further analysis on this category.

Table 1 summarizes the accuracy of forecasting models for different customer seg-
ments. At first glance, the average difference of 1.7% in accuracy between the best
and second-best models might seem negligible. However, such a difference can have
profound implications in the context of supply chain management and inventory op-
timization.Given the current scenario of ongoing capacity shortages, even minor in-
accuracies in forecasting can lead to significant operational challenges. A seemingly
small forecasting error can result in stockouts or overstock situations, both of which
can have detrimental effects on customer satisfaction and operational costs. In such
a tight market, businesses cannot afford to have excess inventory occupying valuable
storage space, nor can they risk running out of stock and losing sales opportunities.
Furthermore, recent estimates from McKinsey underscore the financial implications of
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Figure 8.: Time series showing the actual and a 26-week forecast for each customer
segment within the cooler. The blue dotted line separates the actual data from the
forecasted future.

Figure 8 Alt Text: Time series graph displaying actual data and a 26-week forecast for
each customer segment within the cooler. The graph uses a blue dotted line to distinctly
separate historical data from the projected forecast, facilitating a clear comparison
between actual and predicted values for each segment.

Figure 9.: Time series showing the actual and 26-week forecast for each customer
segment within the freezer. The blue dotted line separates the actual data from the
forecasted future.

Figure 9 Alt Text: Time series chart illustrating actual data and a 26-week forecast for
each customer segment in the freezer. A blue dotted line is used to distinctly demarcate
the transition from actual historical data to the forecasted future, providing a visual
comparison of actual versus predicted trends for each customer segment.
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these discrepancies in forecasting accuracy. For fast-moving items, a mere 5% dip in
forecasting accuracy can lead to a 2.5% surge in inventory costs, which ties up capital
and increases the costs associated with storage, handling, and potential obsolescence.
Moreover, the same dip can result in a 1.5% drop in revenue due to missed sales
opportunities and decreased customer trust (Chui, Manyika, and Miremadi 2018).

5. Discussion

5.1. Framework for capacity planning

As previously mentioned, capacity planning within the cold chain domain is a chal-
lenging task due to the potential economic consequences stemming from inadequate
cold chain capacity. The lack of capacity could result in substantial financial losses,
legal complications, as well as adverse impacts on reputation and necessitate product
recalls (Tsang et al. 2018; Nerbovig 2017). Additionally, distinct from the swift capac-
ity adaptations observed in conventional supply chains, the task of changing capacity
within the cold chain context is intricate and time-consuming. Moreover, the financial
commitments associated with refrigeration infrastructure expansion are notably sub-
stantial. Such expansions are vital within cold chains as refrigeration facilities play a
crucial role in preserving the quality and freshness of their commodities across supply
networks (Wang and Zhao 2021).

Considering the distinctive attributes inherent in the cold chain, managers are faced
with the necessity of formulating both short-term actionable planes and long-term
strategic plans—particularly when the impending break of capacity is evident (Figure
10). This study contributes a distinct vantage point primarily focused on short-term
actionable plans. Firstly, the study underscores that the strategy of uniformly reduc-
ing overall customer orders when approaching maximum capacity is inadvisable. This
is due to the inherent variability among customers in terms of revenue generation
and product classifications (e.g., freezer, cold storage, etc.). Secondly, an observation
emerges that customer segmentation yields multifaceted advantages encompassing rev-
enue management and capacity allocation. Notably, in the context of capacity manage-
ment, the research reveals the absence of a universally applicable forecasting technique
spanning all customer categories.
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Figure 10.: The proposed framework for Cold Chain Capacity Planning.

Figure 10 Alt Text: Graphic representation of the proposed framework for Cold Chain
Capacity Planning, showing the structured process and key components involved in
effectively managing and planning capacity within a cold chain system.
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This framework serves as a guiding compass for identifying and distinguishing be-
tween customers who contribute significantly to the bottom line (in terms of revenue)
and those whose contributions are relatively less substantial. This classification holds
intrinsic value, as it empowers managers with insights to make informed decisions when
it comes to optimizing the allocation of precious capacity resources. In this manner,
the capacity that might have been underutilized by less lucrative customers can be
strategically repurposed to cater to the demands of the most lucrative customers,
depicted in the top-left quadrant of Figure 6.

Furthermore, the framework’s utility transcends mere capacity management, ex-
tending to a profound impact on pricing strategies. By identifying less lucrative cus-
tomers, managers can implement pricing adjustments tailored to encourage these cus-
tomers to migrate from a lower revenue contribution (i.e., the right quadrants depicted
in Figure 6), to a more lucrative one, ultimately depicted in the top-left quadrant of
Figure 6. This strategic pricing shift, aligned with the principles of the framework,
not only addresses the immediate challenge of capacity shortages but also actively
helps revenue optimization. Hence, the comprehensive framework serves as an invalu-
able tool. It not only aids in optimizing capacity allocation but also offers a blueprint
to strategically realign pricing structures. By harmonizing these crucial aspects, the
framework serves as a multifaceted solution that navigates the complexities unique
to the cold chain industry while maximizing both operational efficiency and financial
gains.

5.2. Managerial implications

Integrating AI/ML methodology in cold chain management has opened new horizons
for improving efficiency and responsiveness, including:

• Implementing AI/ML methodologies in cold chain capacity planning offers the
potential to revolutionize the industry, enhancing efficiency, responsiveness, and
adaptability.

• Using the Customer Segmentation Matrix helps in accurately forecasting and
planning different customer segments, addressing the complexity of the diverse
customer base.

• By segmenting customers, companies can tailor their approaches to individual
needs and trends, thereby reducing forecast inaccuracies.

• Americold’s collaboration provides a tangible case study demonstrating how ad-
vanced technology can manage a vast network of facilities, signifying practical
applications of AI/ML.

The landscape of cold chain management demands not only accurate forecasting
but a more holistic, dynamic approach, which entails the following:

• The proposed framework extends beyond mere forecasting, providing a more
holistic approach to capacity planning, aligning with organizational needs and
market demands.

• A dynamic planning process enables businesses to be more agile and responsive
to fluctuations in market trends and unexpected disruptions (e.g., black swan
events (Taleb 2005)).

• The research underscores the inherent uncertainty and limitations of forecasting.
Recognizing these limitations, managers should adopt a cautious and flexible
approach to planning, constantly evaluating and updating models to adapt to
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ever-changing market dynamics.
• Given the fast-paced evolution of AI and ML, continuous learning and improve-
ment should be integral to a firm’s strategy.

5.3. Limitations and future research

It is also essential to emphasize that the results obtained from Americold should be
considered with caution when applied to other organizations or industries. Considering
the specific dynamics, challenges, and customer base, tailored solutions and adapta-
tions might be required.

Just like many research studies, our study has certain limitations and also suggests
interesting directions for future research. Firstly, we’ve focused our study on just one
location within Americold Cold Chain. It would be valuable to examine how well our
proposed framework works in different locations with diverse geographical settings.
Secondly, we’ve divided customers into four groups based on their inventory and co-
efficient of variation (CV), as shown in Figure 6. Expanding the way we categorize
customers could be worth exploring, for instance, by also considering the types of
products they deal with. This might provide a more comprehensive understanding of
how different factors influence customer behavior and could offer more specific insights
for both Americold Cold Chain and similar businesses. Lastly, in future research, it
could be beneficial to consider the problems related to the planning of limited capacity
in a broader theoretical landscape of the shortage economy (Ivanov and Dolgui 2022).

6. Conclusion

In conclusion, this study provides compelling insights into how AI/ML forecasting
methodologies can be leveraged for cold chain capacity planning. Collaborating with
Americold and utilizing the Customer Segmentation Matrix, we have demonstrated
that effective segmentation is crucial for generating practical forecasts in light of the
complexity related to handling a large number of customers. While forecasting is fun-
damental to capacity planning, the challenge lies in acknowledging the inherent inaccu-
racies and the potential impact of unforeseen black swan events. The capacity planning
framework presented in this paper not only addresses the conventional challenges but
also prepares cold storage companies to deal with unexpected events, reinforcing the
understanding that while all models might be imperfect, they can still be immensely
useful.

The contribution of this study extends beyond just the academic sphere and of-
fers a practical, AI-driven approach that can be applied by cold storage companies to
overcome capacity shortages. By connecting the dots between AI/ML modeling, cus-
tomer segmentation, and real-world application, we have proposed a capacity planning
framework that is both relevant and adaptable in today’s ever-changing supply chain
landscape.
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