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A Field Experiment in the Retail Industry
Elena Revillaa, Maria Jesus Saenzb, Matthias Seiftera, and Ye Mab
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ABSTRACT
This study investigates the role of human intervention in artificial 
intelligence/machine learning (AIML)-driven predictions. By doing so, 
we distinguish between three different types of human-AIML colla
boration: automation, adjustable automation, and augmentation. We 
theorize that prediction uncertainty and time horizon represent two 
critical determinants of forecast accuracy. Based on a field experiment 
involving AIML-driven demand forecasts approximately 1,888 stock- 
keeping units in the retail industry, we rely on a multivalued treatment 
effect methodology to measure the effects of human-AIML collabora
tion on forecast accuracy. Our findings show that human intervention 
complements AIML-driven forecasts most effectively (augmentation) 
in predictions with long time horizons and low uncertainty. However 
human intervention is least likely to contribute to the effectiveness of 
AIML predictions (automation) in environments with short time hor
izons and high uncertainty. We discuss implications for extant theory 
and propose a framework outlining the conditions in which human 
intervention is most likely to add predictive value to human-AIML 
collaborations.
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Introduction

The rapid growth of big data and artificial intelligence (AI) technologies in recent years 
showcases the critical role that AI can play in supporting managerial tasks across a wide 
range of industry sectors [14]. Indeed, companies rely increasingly on AI for medical 
diagnostics, talent acquisition, demand forecasting, credit scoring, logistic task scheduling, 
allocation of resources, and the general diagnosis and resolution of managerial problems, 
among others. AI differs from traditional information technologies in that it learns auton
omously [78] and is increasingly able to make decisions without human intervention.

One of the main drivers for promoting AI in the managerial arena is rooted in the 
realization that humans have limited cognitive capabilities [19, 28, 70] whereas AI has the 
potential to compensate for these limitations [18, 54]. Yet when AI is applied indiscrimi
nately, particularly to support knowledge-based functions, it is subject to criticism as some 
tasks remain challenging for machines to complete [48, 7, 8, 15]. Some scholars warn that 
AI-based models may introduce systematic biases into the decision-making process (e.g., 
Kliegr et al. [46] and Li and Chai [53]) and highlight the proficiency of human experts to 
identify and correct them [4, 18, 71].
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From a scholarly perspective, much of the human-AI debate has taken place in 
the Information System (IS) literature (e.g., Tofangchi et al. [76], Wang and 
Benbasat [80], and You et al. [83]). For example, Berente et al. [9], state that “the 
interaction between humans and AI is perhaps the key managerial issue of our time” 
(p. 1440). When applying AI technologies to decisions that have an impact at the 
socioeconomic level, scholars call for humans to remain in the loop [84] and work 
together [26]. Humans are essential to AI because they provide contextualization 
[36]. While AI operates by applying rules without accessing the meaning of the data 
(i.e., contextual knowledge) [54], humans do this by means of reason and judge
ment. Thus, human skills augmented by AI technology promise to result in powerful 
intelligence that is likely to exceed the performance of either party separately [26]. 
Using augmented intelligence, humans continue to do what humans do best—create, 
imagine, and collaborate—while AI helps with the quantitative, rule-based capability 
to consistently generate predictions and provides decision-making speed and 
scalability.

At the management level, a study involving 1,500 companies found that firms achieved 
the most significant performance improvements when humans and machines worked 
together [81]. Yet, recent research [62] indicated that currently only 10 percent of compa
nies obtain significant financial benefits from AI technologies and concluded that compa
nies leveraging human-machine collaboration will likely be best positioned for success. The 
return on investment in AI therefore remains clearly behind expectations, which is largely 
attributable to the fact that companies often fail to effectively manage the relationship 
between AI and humans as a result of oversimplifying the complex interactions between 
technology and humans [57].

In the present article, we argue that the usefulness of AI depends not only on the 
technology itself but also on the ability to integrate it systematically with human expertise. 
Central to this line of inquiry is the question of how companies should determine the level 
of human intervention in human-AI collaboration [26]. Recent studies have proposed that 
the effectiveness of human intervention is task-dependent, in that the type of situation 
influences the degree to which humans and AI are likely to collaborate effectively [65]. 
However, despite various calls for further research addressing the specific role of task 
context in human-AI collaboration, it continues to remain an under-researched topic [9,  
26, 61, 69, 74].

The goal of this study is therefore to seek answer to the following research question: How 
do task characteristics influence the effectiveness of human intervention in human-AI colla
boration? To address this question, we focus on machine learning in prediction tasks 
(artificial intelligence machine learning [AIML]), which is at the core of building contem
porary predictive AI [9, 77]. AIML detects systematic patterns in big data to generate 
predictions that go beyond the ability of human experts [58]. It represents a specific 
application of AI setting formal rules that autonomously adapt the model to changes in 
the environment [6]. Previous literature points to three reasons for studying human-AIML 
collaborations in predictions [40]. First, predictions are ubiquitous. Managers generate 
predictions as part of more generic organizational tasks that involve problem solving, 
matching, design, policy formulation, and guidance [45]. Second, a substantial proportion 
of managerial predictions nowadays rely on an assemblage of humans and algorithms. 
Third, recent advances in the field of AIML have significantly transformed managerial 
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practice, creating the need for a better understanding of the complementarities between 
humans and machines.

Thus, to address our research question, we begin by identifying three different degrees of 
human intervention. Automation (lowest level of intervention) refers to full delegation of 
decision responsibility to the predictive AIML system. In this case, human intervention is 
limited to the design stage, in which the predictive algorithm is configured and trained, but 
not yet utilized to generate predictions. Adjustable automation (medium level of interven
tion) involves both human and AIML, but humans intervene only during the main steps of 
the prediction. In Augmentation (maximum level of intervention), human intervention 
occurs during each step of the prediction process.

Second, pertaining to the need to understand the context of the predictive task of AIML, 
we rely on Metcalf and colleagues [57] who propose and discuss how human capability 
varies as a function of task uncertainty and time horizon, two important dimensions often 
used to differentiate the strengths and weaknesses of humans and AI. Uncertainty relates to 
the difficulty of predicting the future due to a lack of information. Time horizon refers to 
the temporal distance that a decision-maker considers when evaluating the consequences of 
a proposed action. Accordingly, we argue that the effectiveness of human intervention 
critically depends on the interaction along two dimensions of the prediction context: the 
task uncertainty and the time horizon until the prediction materializes.

In the present study, we draw on data obtained from demand forecasting in the retail 
sector as one example of a commonly performed prediction. Demand forecasting refers to 
the process of predicting future sales over a predetermined time to optimize subsequent 
decisions regarding production plans, inventory management, purchasing, logistics, and 
manufacturing [79]. More specifically, we rely on empirical data from an intelligent demand 
adjustment (IDA) system based on AIML, which is part of a collaborative program between 
a multinational supplier and its customer. The IDA system integrates customer inputs into 
the supplier demand forecast process. The supplier is one of the largest multinational fast- 
moving consumer goods (FMCG) companies that has an end-to-end supply chain syn
chronization strategy. Its most recent annual revenue was more than USD $70 billion, 
representing between 8 percent to 10 percent of revenue in the geographic area of our 
study. The customer is one of the largest online retailers in China, and one of the supplier’s 
most important customers. Its most recent annual revenue was more than USD $100  
billion, supplying a market of more than 500 million active end customers. The size and 
complexity of the customer base require forecasting adjustments from the supplier.

Using a field experiment applying AIML to demand forecasting, we estimate the causal 
effects of the various levels of human-AIML collaboration on predictive performance by 
relying on a multivalued treatment effect methodology. Our approach allows us to compare 
the predictive accuracy of different human-AIML collaborations by using—as matching 
criteria—product turnover, price, product segmentation, and product category. In addition, 
our cross-unit study controls for sources of extraneous variance that may affect the relation
ship between human-AIML collaboration, uncertainty, and performance, and thus 
improves our capacity to isolate the examined effects [32].

Our study contributes to the extant literature in the following way. First, responding to 
prior calls to develop a better understanding of human-AI collaboration in organizations [9,  
26, 74], we use field data to examine how the level of human intervention affects the 
effectiveness of AIML-based predictions. Our analysis reveals significant performance 
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differences, extending our knowledge of how the phenomenon of AIML is related to 
organizational design. Second, our study answers present calls for better contextualization 
of the relationship between human-AI collaboration and performance [69]. Our research 
identifies uncertainty and time horizon as two determinants of the effectiveness of human- 
AIML collaboration. We show that human intervention complements AIML-driven fore
casts most effectively when predicting with long time horizons and low uncertainty, 
whereas reliance on human intervention can be detrimental in predictions with high 
uncertainty and short time horizons. Third, we add to the scarce but growing literature 
regarding the role of augmented intelligence in demand forecasting. Our findings demon
strate how and when judgment contributes to improved forecasting, extending the literature 
that seeks to understand the role of judgmental forecasting in predicting demand [1, 67]. 
Finally, our study contributes to forecasting practice by increasing managerial cognizance 
about the different collaborative structures involving humans and AIML that may be used 
to achieve superior demand-forecasting performance.

Literature Review

Human-AI Collaboration

AI relates to the ability of a machine to simulate cognitive processes and perform tasks 
commonly conducted by human beings, such as learning, thinking, and interacting with the 
environment, as well as recognizing patterns, making decisions, and solving problems, and 
even demonstrating creativity [60]. At times, it is argued that AI can outperform human 
cognition. Simon [70] introduced the widely used term bounded rationality to argue that 
human beings are often incapable of optimizing decisions due to their limited memory and 
processing capacity and, therefore, settle for satisfactory solutions. In consequence, unaided 
decision strategies frequently rely on heuristic processes that are likely to suffer from 
judgmental biases and learning myopia [4]. In contrast, AI evaluates large sets of historical 
data more accurately than humans can, thanks to its greater and faster data processing 
capacity [46]. In addition, its superior analytic processing power leads to increased objec
tivity, which, in turn, confers higher status and legitimacy to AI-generated outcomes [54]. 
In sum, AI technology is likely to overcome some of the human biases associated with 
information processing and create insights that may not otherwise have been con
ceived [77].

In contrast, AI has limitations that can negatively affect performance. The perfor
mance of AI is influenced by both the quality of data used in the learning process and 
the biases of human creators during the process of determining which pieces of 
information can be considered relevant [17, 18]. Moreover, AI relies on rules that, to 
be effective, must be specific to the context of application. Scholars thereby refer to 
contextual knowledge as encompassing rules about nonhistorical information that is 
often of a subjective nature [10, 66]. Thus, AI works effectively in narrow contexts in 
which constraints and objectives are quantifiable and well-defined, whereas dynamic, 
incomplete, and unstructured information may at times be processed in an erroneous 
way [85]. Examples of this limitation are frequently found in the stock market, where 
a minor price decrease of a highly volatile share can trigger a reaction by an “alarmist” 
algorithm to sell the stock and, in so doing, trigger a disproportionate response from 
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other trading systems that are programmed with wider limits. As such systems also react 
to selling stocks, they may provoke unjustified falls in the market [50].

Another source of concern is the lack of transparency of complex algorithms. It may be 
unclear how AI abstracts and generalizes from data, or how exactly it fulfills its performance 
criteria. As a result, the AI-driven system may evolve in ways that are difficult to understand 
for human experts. Algorithms therefore are at risk of turning into “black boxes” [2] that 
work well under clear parameters but, from time to time, may result in nonsensical outputs 
that are difficult to predict, explain, or curtail before they lead to major ripple effects. 
Moreover, AI does not have the capacity to reason based on socially relevant factors such as 
fairness or morality. For example, a previous study has found a systematic bias in AI-based 
recruiting processes of companies when the algorithm generated recommendations by 
relying on success criteria that had been intentionally discarded during the model building 
phase (such as gender bias) [20].

Considering the limitations of both agents, scholars have increasingly set out to explore 
how AI can complement human cognition without replacing it [21, 42, 54, 61, 81, 85]. On 
the one hand, AI technologies are faster and more proficient in identifying complex 
interrelations among variables in large volumes of data, leading to new insights. On the 
other hand, human experts are required to provide the blueprint of AI systems, set the goals 
of the system, and provide contextual meaning. This includes the derivation of starting 
hypotheses, the selection of performance criteria based on contextual constraints, the 
evaluation of results, and the creation of perform scenario analyses to mitigate uncertain 
future outcomes. Beyond the design of the AI system, Balasubramanian and colleagues [4] 
highlight the importance of human intervention in detecting and correcting errors in the AI 
decision-making process that may arise from the lack of contextual knowledge. For exam
ple, financial analysts may decide to grant mortgages to customers by considering soft 
factors (e.g., related to social status) that indicate the customer’s potential to access addi
tional funds, but may go beyond the nominal wealth commonly estimated by an AI 
algorithm. In addition, AI may also miss intertemporal dependencies in dynamically 
changing contexts in which historical data quickly becomes obsolete. Humans, in contrast, 
are often efficient when it comes to diagnosing sudden changes in the characteristics of the 
task environment and can judge the appropriateness of the algorithm considering the new 
situation [67]. In short, despite its many benefits, it may be risky to blindly trust in AI-based 
systems if they perform unsupervised.

The aforementioned discussion calls for further research focusing on the colla
boration between humans and AI [17, 26, 59, 78], in which both are seen as team 
members with different, complementary capabilities. At the heart of this problem 
lies the debate between automation and augmentation. Although automation 
(machines take over human tasks) installs the logic of formal rationality in decision- 
making, augmentation (humans collaborate with AI algorithms to enhance decision- 
making) maintains the logic of substantive rationality [54]. Through formal ration
ality, automation makes inferences from historical data and operates under rules that 
are explicitly formulated and aimed at optimizing and maximizing results. It rejects 
arbitrariness, thus relevant contextual data such as implicit knowledge may be 
excluded from the decision-making process. Substantive rationality, in turn, is 
about goal-driven rational actions and the qualitative analysis of the situation. It is 
concerned with acting in accordance with community and underlying values. 
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Therefore, augmentation relies on human intuition and commonsense reasoning 
[81], which requires humans to be part of the intelligent system. This approach 
recognizes the importance of considering various types of reasoning and ensures 
human knowledge is used effectively [85].

Some scholars describe the human–AI relationship as a continuous (rather than dichot
omous) collaborative process that evolves into machine “augmentation” of human capabil
ities [61], implying that there is more than one way to define human-AI interactions [24]. 
Moreover, it means that greater levels of augmentation do not always result in superior 
performance. Our research emphasizes the need to adapt the relative importance of 
augmentation to the characteristics of the decision-making task.

Human-AIML collaboration in prediction

The objective of a prediction task is to estimate the unknown future state of a variable based 
in extracting patterns, trends, and causalities in available data. When it comes to applying 
AI techniques, Benbya and colleagues [6] indicate that the task as well as the outcome to be 
produced determine the particular AI system to be used. Predictions represent one of the 
most popular application types of machine learning in AI (AIML) [63]. In this context, one 
of the most advanced features of machine learning for generating predictions is to test and 
validate the performance of multiple models to match the dynamically changing environ
ment [3]. Importantly, AIML models are not static; they not only produce outputs for 
a given set of parameters, but also possess the ability to learn and improve over time without 
the need to be re-programmed [58].

Past research has studied the performance of various levels of human interventions in 
human-AIML collaboration, ranging from automation to augmentation [12, 22, 69]. 
However, empirical findings regarding the effectiveness of these collaboration types are 
mixed [49]. To shed more light on the effectiveness of human-AIML collaborations in 
predictions, we propose that the degree of human intervention should vary as a function of 
the uncertainty underlying the prediction and the time horizon until its materialization.

Uncertainty describes the difficulty of predicting the future due to incomplete informa
tion or changing conditions [5]. In Galbraith´s words: “[. . .] the greater the task uncer
tainty, the greater the amount of information that must be processed among decision- 
makers during task execution in order to achieve a given level of performance” [28, p. 4]. In 
cases of high uncertainty, AIML can process large amounts of data to detect causal relation
ships between variables or recognize systematic patterns for generating predictions.

When the parameters of the prediction task are well-defined, AIML dynamically learns 
through direct interaction with the environment. Consequently, there is minimal need for 
human perception and anticipation. In these situations, where the level of uncertainty is 
low, AIML can fully play out its capability to predict future states [42]. In contrast, when the 
prediction task is associated with non-numerical information that is difficult to quantify or 
that requires knowledge of the world beyond historical data, expert judgment frequently 
helps to identify new variables and interdependences and recognize abnormal “broken-leg 
cues” [10]. AIML algorithms may not make these assessments efficiently due to their limited 
ability to make sense of qualitative information [4]. Thus, predictions that are based on 
large amounts of contextual, qualitative information call for more judgmental assessments 
by human experts.
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Time horizon refers to the temporal distance that the decision-maker considers in the 
prediction. From the perspective of human cognition, short time horizons are extremely 
challenging to manage in predictions, due to the difficulty of disentangling information 
signals from random noise. Past research has shown that humans tend to misinterpret 
information signals consistently by reacting primarily to signals they observe and only 
secondarily to the environmental system that produced the signal. As a result, in environ
ments with short time horizons, humans are likely to systematically under- and over-react 
in their judgments [47, 55]. In addition, humans have also been found to persistently 
perceive patterns in data where none exist [27] and to provide judgments that systematically 
dampen observed linear trends [37]. In environments with short time horizons this may 
pose a problem because humans mistake noise for an informative signal and thus inappro
priately anchor their own judgment on the AIML-based model output and make insuffi
cient adjustments from that anchor. These small adjustments frequently lower predictive 
accuracy and are motivated by an attempt to “tinker at the edges” [52].

However, as the time horizon lengthens, human forecasters have been shown to anchor 
their judgments to a lesser extent on recent (noisy) information signals and to a greater 
extent on the long term mean of the data series [51]. Hence, human intervention in AIML- 
driven models is likely to add predictive power, particularly if historical data is sufficiently 
available.

In sum, uncertainty and time horizon represent two important features of a prediction 
context whose interaction is likely to influence the effectiveness of human-AIML collabora
tion. We believe that the performance of human intervention in AIML-driven systems 
critically hinges on the ability to recognize the properties of the prediction at hand as well as 
to anticipate potential changes in the prediction context. Thus, our contextualization of 
prediction allows for a systematic analysis of how the interaction between humans and 
machines influences performance outcomes in one specific application that managers 
frequently face. It enables a better understanding of the strengths and weaknesses that 
humans and machines bring to the table in this collaborative relationship when the 
objective is to effectively cope with incomplete information about the task and/or rapidly 
changing conditions in the time available to complete it. Our study acknowledges the 
performance limitations of both humans and AI without favoring either input at the outset. 
Instead, we suggest that different degrees of human intervention should be used in accor
dance with the characteristics of the prediction context [61].

Hypothesis Development

In the following section, we describe the mechanism according to which uncertainty and 
time horizon moderate predictive performance and propose a set of testable hypotheses.

Role of Uncertainty in AIML-Driven Predictions

Uncertainty makes it difficult to predict future events [31]. For example, when a new product 
is introduced into the market, only limited historical sales data are available, which poses 
a challenge both for the development of AIML-based algorithms as well as for human 
cognition to generate accurate sales predictions. One often used assessment approach is to 
rely on simple heuristics (for instance, by drawing on past data of similar products) to make 
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inferences about the demand for the new product. However, previous research has demon
strated that human judges do not perform well as “intuitive statisticians” in noisy predictions 
[11, 38, 43, 44]. In such environments, humans find it difficult to differentiate between 
valuable information signals and noise introduced by random variation [67].

Judgmental accuracy of human experts has been found to improve as the length of the 
time series increases [75]. In the absence of historical data, human experts may misdiagnose 
the stationarity of the data series by perceiving it to be noisier than it is. Due to the 
behavioral tendency to overweigh recently observed time series values [47], a perception 
of nonexisting patterns or illusionary trends may result [27]. AIML-based models, con
versely, critically require historical data for training and calibration purposes during the 
model building process. However, in comparison to the performance of human judges, 
AIML-driven models are likely to be superior in their predictive performance, as they are 
extremely efficient in extracting the signal from the noise by relying on multiple, real-time 
market signals and simultaneously processing masses of big data related to the firm’s entire 
product portfolio [23].

Amar and colleagues [3] highlight four characteristics of AIML-based models that are 
likely to lead to superior predictive performance in environments with sparse historical 
data: First, AIML-driven models continuously test and compare multiple approaches to 
identify the best-performing model. Second, these models use data-smoothing methods to 
adjust for temporary, nonstationary changes in the data series, which may not be repre
sentative of the longer-term demand pattern. Third, AIML-based models can generate and 
test multiple scenario forecasts to allow managers to cope with future uncertainty. Fourth, 
they may utilize external data sources to detect seemingly unrelated causalities within the 
forecasting event. This means that even in environments with sparse data, AIML-driven 
models can produce outputs based on exploiting statistical interrelations with other, 
correlated predictions and are therefore likely to learn faster and more efficiently than 
their human counterparts. As a result, we expect model accuracy to be higher than the 
accuracy of human judges in the case of high task uncertainty. 

Hypothesis 1: In predictions with high uncertainty, the level of human intervention in 
human-AIML collaboration is negatively associated with accuracy.

For predictions with low levels of uncertainty, such as in the case of established products 
that have been in the market for a long time, AIML-based algorithms are highly 
proficient in processing historical demand data and can extrapolate linear trends and 
seasonal patterns. At the same time, in these environments, human experts can use their 
contextual knowledge to diagnose nonlinear anomalies in the data series efficiently and 
make effective judgmental adjustments to model outputs [30, 52, 66]. While AIML-based 
models commonly use smoothing techniques to disregard temporary, nonstationary 
deviations from the regular demand pattern [3], human experts can use their domain 
knowledge to incorporate such deviations in their judgments. Specifically, expert judg
ment is often suggested to result from a pattern-matching process, during which 
humans cognitively compare the task at hand with other situations experienced in the 
past [67]. Human experts therefore hold contextual knowledge capturing nonhistorical 
information surrounding the prediction that is often of a subjective, qualitative nature 
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(e.g., new-product introduction plans, promotions, assortments, competitors, manufac
turing, market, and macroeconomic conditions) [10, 44, 66].

Taking this into account, human-AIML collaborations based on available contextual 
knowledge, merged with a well-defined AIML-driven model, represent a highly effective 
combination. Specifically, when the parameters of the model are well-defined and calibrated 
using large historical data sets, the algorithm is likely to produce robust demand estimates. 
In this case, the role of the human expert reduces to monitoring the evolution of the 
demand pattern and intervening whenever an irregularity is diagnosed. Such irregularities 
may relate to changes in the prediction due to information that is difficult to quantify, or 
knowledge of the world outside the historical data that could relate to the emergence of new 
variables and interdependencies between them [10]. In sum, in predictions with low 
uncertainty, the need for human intervention arises when it is possible to draw on prior 
experience and contextual knowledge to identify disruptive changes in the data environ
ment that the AIML-based algorithm could be missing. Accordingly, in the presence of 
large historical data, we expect human-AIML collaborations to be positively associated with 
predictive performance. 

Hypothesis 2: In predictions with low uncertainty, the level of human intervention in human- 
AIML collaboration is positively associated with accuracy.

Role of Time Horizon in AIML-Driven Predictions

In addition to the role of uncertainty in predictions, a second major determinant of 
predictive performance concerns the length of the time horizon until the prediction 
materializes (i.e., short term vs. long term) [39]. Regardless of the level of uncertainty, 
predictions with short time horizons are difficult to make because contextual data related to 
special events such as sales promotions, which are frequently used in the retail sector, may 
trigger nonstationary changes in demand patterns [41]. For instance, promotional cam
paigns may be associated with temporary changes in marketing strategy, price reductions, 
inventory availability, display, and so forth, which makes short-term demand estimations 
one of the retailer’s biggest challenges [56]. For example, a study among North American 
grocers [56] found that the grocers were not able to take all relevant aspects of a promotion 
into account when predicting sales. In addition, inaccurate promotional predictions can 
result in stock-outs and reduced customer satisfaction if the effect of the promotion is 
underestimated, or in costly spoilage and markdown losses if the effect of the promotion is 
overestimated. Beyond the effect of such contextual data, past studies have shown that 
human judgments with short time horizons are likely to suffer from systematic trend 
dampening when predictions are made based on historical data. This often results in severe 
underestimation of real and persistent changes in the demand pattern and hence in reduced 
predictive accuracy [34].

Considering this discussion, on the one hand, automation is likely to perform best for 
predictions with short time horizons. The ability to conduct extensive scenario analyses 
allows AIML-based models to consider a wide range of potentially related predictions and 
use real-time data on the fly as evidence to support or discard specific scenarios [3]. 
Similarly, as short time horizons require the model to be reactive and quickly adapt to 
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incoming data, machine learning has been proven to be highly effective in consistently 
comparing multiple candidate models to identify the best-fitting one [13]. Other studies 
also point to the superior predictive performance of AIML-based algorithms, which have 
been shown to improve both promotional forecasting capabilities and accuracy dramatically 
[56], even though models generating predictions with short time horizons may quickly 
become obsolete. 

Hypothesis 3: In predictions with short time horizons, automation will be associated with the 
highest predictive accuracy, relative to other forms of human-AIML collaboration.

For predictions with long time horizons, on the other hand, a more nuanced perspective is 
needed to comprehend the relationship between human-AIML collaboration and predictive 
accuracy. Particularly in the presence of historical data (i.e., when uncertainty is low), 
AIML-based models can extrapolate values reliably within the range of observations based 
on which the models have been estimated. Predictions with long time horizons, however, 
also require more historical data to model the entire demand trajectory. In this regard, 
human experts have been shown to be proficient in using their prior knowledge and/or 
industry-specific experience related to the product’s general life cycle to account for long- 
term patterns in demand behavior [66].

In addition, it has been shown that human judges anchor their predictions to a lesser 
extent on recent periods of the time series and to a greater extent on the long-term mean of 
the data series [51], which implies that humans are likely to be proficient in filtering out 
random noise in stable data environments and focus on underlying trends when generating 
predictions with longer time horizons. Hence, we expect human-AIML collaboration to be 
positively associated with predictive accuracy in predictions with low uncertainty. However, 
this may not be true in the case of high uncertainty, for which historical data is typically 
more variable and of shorter duration. In fact, past research has found that more variable 
data series also tend to result in more variable random judgment error [34]. As a result, the 
performance of human experts is likely to be reduced, as they may be distracted by the level 
of noise in the data environment and fail to apply their contextual knowledge effectively to 
generate judgments. When data from external, seemingly unrelated, sources are available, 
AIML-based models are likely to perform better than human experts due to their ability to 
scan and evaluate millions of data points to identify interrelationships with the prediction at 
hand, which would be impossible with human involvement [69]. 

Hypothesis 4: In predictions with long time horizons, augmentation will be associated with 
the highest predictive accuracy under low uncertainty, while it will be associated with the 
lowest predictive accuracy when uncertainty is high.

Methodology

We designed a field experiment in the context of AIML predictions. Our empirical setting 
studies predictions in terms of AIML-driven demand forecasting in the retail industry. The 
increasing availability of big data sets and recent advancements in AIML technologies have 
revolutionized the practice of demand forecasting and machine learning is increasingly used 
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in supply chain management, particularly for performing predictions [3]. Demand forecasts 
serve as the basis for making decisions regarding supply chain planning, inventory manage
ment, purchasing, production and distribution [79]. Gartner [29] argued that AIML 
technologies are likely to affect demand forecasting more than any other components of 
the supply chain processes—particularly in the retail industry. This is because the rapidly 
changing retail landscape, characterized by e-commerce sales and shoppers who choose 
from new fulfillment options, complicates forecasting and replenishment processes. This 
complexity is often exacerbated by sales promotions, weather, disruptions, market trends, 
and seasonal demands.

We study demand forecasting in a specific retail company and its key customer. We 
estimate the causal effects of human intervention in human–AIML collaboration on 
demand forecast accuracy under two features that define the prediction context: demand 
uncertainty and time horizon. We then employ a multivalued treatment effects methodol
ogy to test our hypotheses.

Sample Collection and Description

The data underlying this study were provided by an international fast-moving consumer 
goods (FMCG) company. We collected data from its demand forecasting process from 
both sides of the dyad: from the supplier’s (the FMCG) intelligent demand adjustment 
system and from the FMCG’s key e-commerce customer. This collaborative forecasting 
system integrated other sources of demand signals from the e-commerce customer. The 
empirical setting selected for this research was suitable, considering the high level of 
uncertainty inherent in e-commerce retail markets, especially in a fast-growing environ
ment such as China.

With the main aim of developing a better understanding of the engagement between the 
AIML forecasting system and the human forecasters involved in this process, we conducted 
several interviews with demand forecasting experts a posteriori of the experimental study. 
As part of the interview, we elicited the type of contextual information the forecaster could 
contribute to each step of the forecasting process, the dynamics of interactions between the 
forecasting algorithm and the forecaster, their collaboration with other functions to enrich 
the forecasting process, and other types of expert knowledge that could be contributed to 
the forecasting process. The insights obtained thereby enhanced our understanding of their 
particular role in improving demand forecasting performance, as well as their particular 
role in the dynamics of human-AIML collaboration. Our sample was composed of 1,888 
stock-keeping units (SKUs), the total number of SKUs that integrate the customer’s 
portfolio of products. During a 50-week period (ending in April 2020), an AIML algorithm 
(see the following description) was trained dynamically in the actual environment of this 
field experiment to forecast the weekly demand for each SKU according to the data flow 
depicted in Figure 1. For each SKU, one of the three levels of our treatment condition— 
automation, adjustable automation, or augmentation—was assigned randomly, and the 
paired SKU-treatment was held constant for the entire 50 weeks to guarantee the robustness 
of the experimental design. Given the empirical purpose of our research, we focused on the 
most recent result (Week 50) for each of the 1,888 SKUs.

The forecasting process consisted of a series of six steps supported by AIML-driven 
algorithms (Referred to as Intelligent Demand Forecasting System in Figure 1). Before 
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starting the process, the customer sent demand indicators for the upcoming 13 weeks. 
Additionally, the historical data was preprocessed; FMCG collected both the historical 
national-level forecast and the historical customer demand actuals internally in the com
pany’s integrated demand forecasting system. During Step 1, customer forecast codes were 
converted to assess missing master data or mismatches, and experts reviewed the data 
conversion to ensure consistency. During Step 2, the percentage of internal customer 
demand and demand per region associated with a particular distribution center were 
calculated per SKU by the forecast engine (customer ratio), before the AIML Artificial 
Neuro Network (ANN) and Autoregressive Integrated Moving Average (ARIMA) methods 
began to be applied (see as follows). In this step, human expert forecasters could review the 
percentages proposed by the AIML system and consider additional effects related to 
demand, including promotions, special events, or the potential behavior of a particular 
product in certain regions or distribution centers. The forecaster could receive informa
tional signals to make corrections, or he/she could proactively check pieces of information 
to review this forecasting step more meticulously. During Step 3, the data were transformed 
into a particular forecast for the customer and the SKU, using the customer ratio developed 
in the previous step. If necessary, experts could make corrections in Step 3 based on their 
product category expertise. During Step 4, the final forecast was determined based on the 
balance (weights) between the internal forecast and the customer forecast. In this step, 
human forecasters could adjust the deviation and balance the ratio of customer needs 
against the ideal (future) scenario in terms of product manufacturing versus distribution. 

Figure 1. The six steps of the demand forecasting process are circled.
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These adjustments may be based on external information, such as available inventory, 
customer priorities, promotions, nonstationary changes in demand, or unexpected disrup
tions. During Step 5, a forecast was produced (with the right format) based on the 13-week 
demand adjustment. In Step 6, the adjusted demand forecast results were reviewed and 
released to guide further production and/or distribution scheduling and decision-making. 
The results from Steps 5 and 6 could be assessed by expert forecasters considering certain 
signals regarding expected gaps, data formats or final recommendations from marketing 
and, if needed, further adjusted.

The supervised AIML forecasting system was based on a machine learning algo
rithm grounded, as noted above, in ANN and ARIMA technologies [83, 86]. It was 
implemented using a multilayer perceptron model, a feed-forward (fully connected) 
neural network trained with a backpropagation algorithm [41]. Particularly, ANN 
techniques represent a variety of AIML deep learning technologies that assess the 
performance of multiple predictive models to adjust to the changing environment 
[3]. They mimic how human neurons signal among themselves to perform a learning 
dynamic [41].

The same algorithm forecasting method was applied to all SKUs in considering the 
transactional data shown in Figure 1. The input variables to the AIML-driven model include 
factors such as the transactional demand forecast, customer (retailer) demand signals, 
scheduled promotions, and actual historical customer demand or shipment records.

The human forecasters were a team of 15 experts working for the FMCG company; each 
had more than 4 years of forecasting experience in the e-commerce retail industry. Each 
forecaster had expertise in particular product categories. This expertise served as the basis 
for their contextual knowledge when intervening in the forecasting process. Expert fore
casters processed the same SKU throughout the overall forecasting process. The initial and 
interim engagement between the algorithm and the forecaster was triggered either by the 
treatment allocated to the SKU in this study or by the initiative of the forecaster to review 
the corresponding forecasting steps (This did not occur in the case of Treatment 1- 
automation).

Forecasters were not informed about the various experimental conditions or the general 
goal of the study when providing forecasting judgments. However, they were aware that 
their intervention in the demand forecasting process was recorded for the purpose of 
improving the AIML demand forecasting system. All the experts had access to the same 
sources of information from different functions in the company via their Enterprise 
Resource Planning (ERP) system, Warehouse Management Systems, and a repository of 
historical forecasting data. During the forecasting process, they could identify contextual 
data from these sources and use web-based interfaces to interact with the forecasting 
process and add their key insights.

In the overall forecasting process, the human forecaster could discuss specific situations 
of certain SKUs with other functions in the FMCG company, including, for example, recent 
changes in the marketing strategy for that SKU, changes in displays or marketing channels, 
priorities for other key customers that eventually could affect the availability of that SKU, 
and changes in the production strategy, such as new equipment or re-routing the product to 
another distribution facility. Sometimes, the regular data in their ERP system is not 
available with the expected quality; for example, in terms of the granularity or the expected 
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frequency in refreshing the data. In this case, the forecaster must interpret the context to 
mitigate this lack of data quality. At times, the forecaster receives signals from the e-com
merce customer via their commercial department that require parameters to be adjusted.

Experimental Design

We studied human–AIML collaboration in a field experiment, in which we analyzed the 
effect of human intervention along the six steps of the demand forecasting process adopted 
by the company (Figure 1). Each of the steps could be adjusted by human judgment-based 
intervention.

Consistent with our conceptualization, we distinguished between three levels of human 
intervention in human–AIML collaboration that represented our experimental conditions, 
and each SKU in the sample was randomly assigned to one of the conditions. The first level 
is automation, in which the AIML-based model is fully responsible for generating demand 
forecasts and operates without human intervention in any of the 6 steps of the process. 
The second level is adjustable automation, a medium level of human intervention in which 
both human forecasters and AIML-based models interact only for the two main steps (2 
and 4) of the six-steps in the demand forecasting process. The third level, augmentation, is 
characterized by the highest level of intervention, such that the work is distributed more 
evenly between the forecaster and AIML model. In this case, human forecasters interact 
with the AIML during all six steps of the demand forecasting process.

Considering the additional workload for the expert forecasters in the augmentation 
condition, who had to work in the experiment setting and participate in all forecasting 
steps, we placed an additional restriction of a maximum threshold of SKUs under this 
condition. After having randomly assigned SKUs to one of the three experimental condi
tions in our study, our sample included 873 SKUs for the automation condition, 746 SKUs 
for the adjustable automation condition, and 269 SKUs for the augmentation condition.

Empirical Methodology

As mentioned before, the goals of our research were to estimate the causal effect of human 
intervention in human–AIML collaboration on demand forecast accuracy and to determine 
how this effect differs in terms of demand uncertainty and time horizon. Consequently, we 
applied the treatment effects models based on the three levels of human intervention 
defined above. We assigned value 1 to the no intervention treatment level (automation), 
value 2 was assigned to the medium level of intervention (adjustable automation), and 
value 3 was assigned to the higher level of intervention (augmentation). The analyzed 
outcome was demand forecast accuracy, in the form of forecast errors.

To examine the data obtained from the field experiment, we followed the analytical 
strategy outlined in Revilla and Rodríguez-Prado [64] and Cattaneo and colleagues [16]. We 
used the following two indices: treatment level j (j = 1, 2, 3) and SKU i (i = 1, 2, 3, . . . , n). 
Our model is fully specified based on random vector zi ¼ yi;wi; xi

0� �0
; where yi is the 

outcome variable (forecasting accuracy error for short- and long-time horizons), wi denotes 
the experimental condition, and xi represents the kx × 1 vector of covariates (characteristics 
of each SKU).
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Based on the causal effects of each treatment level on predictive accuracy, we built 
a counterfactual model. Only the actual outcomes, yi, were observed (forecast accuracy 
error for the short- and long-time horizon); other potential outcomes after treatment, yi(j), 
could not be measured. Therefore, we created an independent variable to represent the 
outcomes for every SKU i: 

where di(j) = 1(wi = j), which implies that SKU i received treatment j; otherwise, di(j) = 0.
Following Winship [82], we wanted to observe the aggregated effect of each treatment 

level j by calculating the mean of potential outcomes with their distribution E[Y(j)]. Note 
that the outcome (forecast accuracy) for a particular SKU could also be observed if other 
experimental conditions had been applied. Thus, we calculated the average treatment effect 
on forecast errors as follows: 

where j is the experimental condition applied, instead of another condition j′.
We computed an augmented inverse propensity weighted (AIPW) estimator to estimate 

the experimental condition effect. This method combines an adjustment of the regression 
model with a propensity score. Thus, according to Tan [73], we get the benefit of doubling 
the robustness property because either the model for estimating the effect, or the regression 
model for our outcome, is specified correctly; therefore, the AIPW estimator will be 
consistent.

According to Cattaneo and colleagues [16] and Glynn and Quinn [33], to determine the 
AIPW estimator we first computed a multinomial logit model for the generalized propen
sity score from the estimation of the treatment model. To estimate each treatment’s 
outcome for each SKU, we used regression analysis. The potential means were subsequently 
calculated, weighting predicted outcomes means, using the inverse propensity weight 
calculated at the beginning of the process.

Implementing the AIPW method implies consideration of both the unconfoundedness 
(conditional independence) and common support assumptions [16]. Unconfoundedness 
can be satisfied if we control covariates which demonstrate that potential outcome distribu
tions are not related to specific treatment levels. We relied on the multiple covariates 
analyzed in our research, which cover all the potential factors relevant to treatment level 
on the outcomes. Several empirical research studies have relied on this assumption [64, 72]. 
Common support assumptions required us to observe effects for each type of SKU for all 
treatment levels, which are determined by predicting the previously mentioned generalized 
propensity scores.

Outcome and Contextual Variables

A common method for quantifying forecast accuracy is to study the quality of forecasts in 
terms of the error component, which is determined by the difference between actual 
demand and forecast demand and expressed as a percentage of the actual demand.

To analyze the effects of the factors that define the context of the prediction (forecasting 
demand) in the retail environment, two key variables were considered: demand uncertainty, 
which is operationalized in terms of product innovativeness, and the time horizon.
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Scholars have proposed that innovativeness of the product for which sales are 
predicted represents a major cause of demand uncertainty [31]. In fact, previous 
research has distinguished between two types of consumer products that differ 
primarily according to their associated demand patterns: basic (or functional) pro
ducts and innovative (or fashion) products [25]. Basic products satisfy basic needs. 
These products are bought regularly and are considered staples, with a predictable, 
stable demand and long-life cycles. Because the characteristics of basic products do 
not change frequently, large amounts of historical data are usually available when 
forecasting future demand. In contrast, new, innovative products have short life 
cycles and a more fluctuating, uncertain demand. Because of their short time in 
the market, these products have little historical data prior to a selling period, which 
makes demand forecasting extremely difficult. In addition, these products may also 
be associated with new attributes on which AIML-based models need to be trained 
to predict future sales.

Consequently, product innovativeness is measured based on the product’s launch date. 
For FMCG products, if forecasting occurs within 6 months of product launch, items are 
defined as innovative products with new life cycles and scant, if any, historical data. If 
forecasting occurs more than 6 months from product launch, products are considered well- 
established in the market. Therefore, this variable (product innovativeness) is divided into 
two groups of SKUs: 1) when the launch time until the time of forecasting is less than 6 
months (innovative product, so high uncertainty), or 2) when the launch time until the time 
of forecasting is more than 6 months (established product, so low uncertainty).

Our second key variable, time horizon, is determined by means of discriminating the 
demand forecast accuracy error for long-term versus short-term time horizons. The long- 
term demand forecast, also known as the layout accuracy error, is a 13-week forecast time 
horizon. Therefore, when determining the demand forecast over actual demand, the value 
would be more than 100 percent, but it would be less than 100 percent if determining actual 
demand over the forecast demand. The short-term demand forecast, also known as the 
mean absolute percentage error, uses a forecast horizon of 2 weeks.

Pretreatment Variables
To fulfill the conditional independence assumption, we used a wide range of pretreatment 
variables. They were selected to control the potential influence of SKU-specific product 
features on predictive accuracy. We selected the following pretreatment variables based on 
the features of each product: price, turnover rate, product segmentation, and product 
category. First, we controlled for the price of the particular SKU using a binary variable, 
differentiating between high and low prices according to the customer’s assessment. We 
considered the customer dynamics for each SKU to assess the potential impact of the 
turnover rate to determine whether sales were moving quickly or slowly. We also created 
a binary variable for turnover rate: 1 for a high turnover rate (<40 days), 0 for a low turnover 
rate (≥40 days). We differentiated product segmentation, again using binary variables, from 
six different segments, from A to F, according to the customer’s classifications, which 
represent particular operational practices and reflect the relevance of a particular SKU 
each week. Finally, we considered the effect of product category based on which of the seven 
categories each SKU belongs to, as mandated by the FMCG industry, and included binary 
variables according to the type of end user of the product. Note that different resources and 

1086 JOURNAL OF MANAGEMENT INFORMATION SYSTEMS



management teams could have been assigned to a particular product category, which would 
have resulted in differences in performance.

Table 1 summarizes our pretreatment variables, in terms of sample sizes and descriptive 
statistics. We conducted our analysis using Stata/IC and the command group “teffects aipw” 
to calculate the average treatment effects results.

Results

Table 2 shows the estimated potential mean forecast error of long-term demand forecasts 
for each of the three treatment levels: automation, adjustable automation, and augmenta
tion. It also reports the average treatment effects when comparing one experimental 
condition versus another. Standard errors and levels of significance are also noted. We 
were interested in analyzing how the different experimental conditions varied in terms of 
forecast error based on the contextualization variables (product innovativeness and forecast 
time horizon).

First, when analyzing the effects of product innovativeness, we observe significant levels 
of accuracy error for long-term forecasts; this error increases when comparing treatment 
level 3 to level 2, and treatment level 3 to level 1, as shown in Table 2 (left column). A similar 
representation is seen in Table 3 (left column) but, in this instance, the outcome variable is 
forecast accuracy error for a short-term demand forecast. For innovative products in the 
market, better accuracy for a short-term horizon is obtained when the AIML system 
generates forecasts without human intervention. The worst scenario (when the error 
increases) occurs when we compare treatment level 3, augmentation, with level 1, automa
tion. Therefore, based on the significant results presented in Tables 2 and 3, we conclude 

Table 1. Sample sizes and descriptive statistics.
Total Observation Treatment Groups (N = 1888) n

Automation (1) 873
Adjustable automation (2) 746
Augmentation (3) 269
Variables Mean SD Obs.

Outcome variables
Accuracy error for long-term forecast 1.24 0.43 1888
Accuracy error for short-term forecast 0.58 0.03 1888

Pretreatment variables
Turnover 71.72 161.99 1888
Turnover_dummy 0.48 0.50 1888
Basic price 58.03 61.55 1888
Price_dummy 0.47 0.50 1888
New product_dummy 0.27 0.45 1888
Established product_dummy 0.73 0.45 1888

Product segmentation (a–f) 1888
Product category

Category_1 0.06 0.24 116
Category_2 0.48 0.50 905
Category_3 0.01 0.11 24
Category_4 0.06 0.24 117
Category_5 0.19 0.40 365
Category_6 0.04 0.20 81
Category_7 0.15 0.36 280

Abbreviations: Obs., observed; SD, standard deviation.
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that H1 is fully supported, verifying the negative effect of human intervention in human- 
AIML collaboration on forecast accuracy for innovative retail products (high uncertainty).

When we focus on established retail products, we observe in Table 2 that lower levels of 
forecast errors are observed when augmentation is applied to products that have been in the 
market for a long-time horizon, and demand forecasts for a long-term horizon were elicited 
(upper part of Table 2, right column). In this context, there is a significant reduction in 
forecast error for long-term predictions as we move from treatment level 2 (adjustable 
automation) to level 1 (automation), and the same happens when moving from treatment 
level 3 (augmentation) to level 1 (automation) (Table 2, lower part, right column). For 
established retail products the forecast error for short-term predictions (Table 3, right 
column) is reduced when we compare treatment level 2, adjustable automation, to level 1, 
automation. Conversely, this error increases when we compare more human-centered 
decision-making in forecasting (treatment level 3, augmentation) versus medium interven
tion (level 2, adjustable automation). The difference between augmentation (treatment 
level 3) versus automation (level 1) is not significant. For established retail products, 

Table 3. Average treatment effect by product innovativeness for short forecast time horizon.

Human Intervention in Human-AIML 
Collaboration

Accuracy Error for Short-Term Time Horizon

Innovative Product

Significance of Two-Sided 
Test for Equality

Established Product

Potential mean 
(Percent) SE

Potential Mean 
(Percent) SE

Automation (1) 0.81 0.09 *** 0.50 0.03
Adjustable automation (2) 1.00 0.17 *** 0.31 0.03
Augmentation (3) 1.99 0.50 *** 0.55 0.08

Average 
treatment effect SE

Average 
treatment effect SE

2 vs. 1 0.25 0.24 *** –0.39*** 0.06
3 vs. 1 1.47** 0.66 *** 0.10 0.17
3 vs. 2 0.98* 0.59 *** 0.81*** 0.31

Notes: Augmented inverse propensity weighted estimators controlling for product difference in product segmentation 
category, turnover, product tier, and product price. 

Abbreviations: AIML, artificial intelligence/machine learning; SE = standard error. 
*, **, ***Significant at 10 percent, 5 percent, and 1 percent, respectively.

Table 2. Average treatment effect by product innovativeness for long forecast time horizon.

Human Intervention in Human-AIML 
Collaboration

Accuracy error for long-term time horizon

Innovative Product

Significance of Two-Sided 
Test for Equality

Established Product

Potential Mean 
(Percent) SE

Potential Mean 
(Percent) SE

Automation (1) 1.05 0.07 *** 1.59 0.09
Adjustable Automation (2) 0.92 0.05 *** 1.35 0.08
Augmentation (3) 2.23 0.39 *** 0.78 0.06

Average 
treatment effect SE

Average 
treatment effect SE

2 vs. 1 –0.12 0.07 *** –0.15** 0.07
3 vs. 1 1.13*** 0.39 *** –0.51*** 0.05
3 vs. 2 1.41*** 0.44 *** –0.42 0.05

Notes: Augmented inverse propensity weighted estimators controlling for product difference in product segmentation 
category, turnover, product tier, and product price. 

Abbreviations: AIML, AIML, artificial intelligence/machine learning; SE, standard error. 
*, **, ***Significant at 10 percent, 5 percent, and 1 percent, respectively.
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lower accuracy errors for the short-term horizon are obtained under treatment level 2, 
adjustable automation (Table 3, right column).

Consequently, we conclude that, in predictions with low uncertainty (i.e., established 
retail products), human intervention in human-AIML collaboration is positively associated 
with forecasting accuracy. Therefore, H2 is supported.

When analyzing time horizon, augmentation clearly shows the highest level of forecast 
error for short-term forecasts regarding innovative products (high uncertainty). However, 
for established products (low uncertainty), forecast errors improve when we compare 
augmentation and adjusted automation, but errors worsen for adjusted automation versus 
automation. Consequently, H3 is partially confirmed.

Analyzing the results from Table 2, we observe the significant results of Average 
Treatment Effect(ATE) for long forecast time horizons (lower part). For established pro
ducts, the highest reduction in accuracy error occurs in high levels of human intervention 
(both augmentation and adjusted automation) as compared to automation alone. For 
innovative retail products (high uncertainty), the highest increase in forecast errors occurs 
when we compare augmentation (treatment 3) with both treatments 1 and 2, which suggests 
that the best performance is obtained by reducing human intervention in the collaboration 
when predicting the demand for innovative products. Therefore, H4 is fully confirmed.

Tables 2 and 3 summarize the main results extracted from our data. The results allow us 
to generally confirm that differences in human intervention in human-AIML collaboration 
impact predictive accuracy depending on the factors that define the context of the predic
tion, such as uncertainty (in terms of product innovativeness) and time horizon.

Discussion

This study extends emerging research on human-AI collaboration in the information 
systems (IS) literature by investigating human and AI complementarities and identi
fying opportunities to overcome biases in the predictions of both humans and 
machines. We aim to understand the heterogeneity of relationships that the context 
can create around human-AI collaboration. Toward this broader objective, we focus 
our research on AIML predictions and investigate effective ways of combining 
humans and AIML, considering the limitations and strengths of both agents. We 
argue that the two key dimensions of the prediction context—uncertainty and time 
horizon—have a critical impact on the effectiveness of human intervention in AIML- 
based predictions. Our findings suggest that human intervention complements 
AIML-driven models most effectively in predictions with low uncertainty and long- 
time horizons, where humans are proficient in relying on past information to 
diagnose anomalous changes in the data series. In contrast, AIML-driven models 
appear to perform best autonomously in environments with high uncertainty and 
short time horizons, thanks to their ability to detect and exploit interrelations with 
variables beyond the prediction at hand. Between these two extremes, we find that 
a moderate level of human intervention is likely to result in the best predictive 
performance in human-AIML collaboration.
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Theoretical Implications

Our research answers the recent call for obtaining a better understanding of human-AI 
collaboration [9, 26, 61, 69, 74], by showing that the effectiveness of human-AIML colla
boration depends on the characteristics of the prediction context. Specifically, we identify 
task uncertainty and the time horizon available until the prediction materializes as two key 
factors that explain the relationship between human–AI collaboration and performance.

Our study has also allowed us to shed light on how the predictive context might require 
changes in the configuration of human-AIML collaborations. We introduce uncertainty 
and time horizon in retail demand forecasting as two key factors and identify forecasting 
challenges for various levels of human-AIML collaboration. Product innovativeness, as the 
main source of uncertainty, is critical to our understanding of how the human intervention 
in the human-AIML collaboration affects demand forecast accuracy because, to varying 
degrees, human judges evolve their predictions based on available data. Two key considera
tions here are historical data and contextual data, because they are often integral compo
nents of demand forecasting. AIML-based models perform well with historical data and 
eliminate variants that do not conform to these data [4]. A lack of contextual data may result 
in AIML models making poor decisions, particularly when unexpected changes that might 
alter underlying cause-effect relationships are not fully appreciated.

Our research indicates that human expertise can complement AIML-driven prediction 
models when the input of the algorithm lacks contextual data. In addition, AIML predictive 
models handling historical data affect forecasters’ effectiveness significantly when they 
analyze contextual data, which also suggests that humans and AI complement each other 
[35, 42, 81, 85]. Building on this finding, we emphasize the emergence of a hybrid human- 
AIML collective intelligence and offer a vision of augmentation as an evolutionary process 
during which humans learn from machines and machines learn from humans. This requires 
repeated interactions between the independent judgment of AIML predictive models and 
the contextual, practically relevant criteria of domain experts [78]. Going further, compa
nies should regularly question the acquisition of knowledge that is being produced in this 
co-evolutionary process over the course of its development. Knowledge acquired through 
this process should serve to maximize AI capabilities and minimize automated rational 
judgment biases. Simultaneously, mutual learning through human and AI interaction 
should help revise humans’ preconceived biases and augment decision-making.

The time horizon is also a key consideration for how companies should distribute the 
work between humans and AIML-driven prediction models. In our theorization, we men
tion that humans are limited in terms of both information processing speed and capacity, 
which creates biases in decision-making for short-term demand forecasts. Moreover, 
humans need time to perceive and understand changes in the environment that drive 
sound decisions. In contrast, AIML-driven prediction models’ speed and ability to discover 
systematic patterns by analyzing large volumes of historical data compensate temporally for 
the lack of managerial judgment. In part, the retail data from our study support the insights 
of prior research since it demonstrates the positive impact of AIML-based decision-making 
(automation) on short-term demand forecasting performance for innovative products [69].

As a result of this work, we propose a framework for understanding the human inter
vention in human-AIML collaboration. Consistent with our empirical findings, Figure 2 
illustrates how the effectiveness of human intervention varies along two critical dimensions 
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of the predictive context: uncertainty and the time horizon. It shows that human judgment 
is likely to complement AIML-driven models when task environments are associated with 
long time horizons and low uncertainty. In contrast, our research suggests that this is not 
the case when the task requires coping with short time horizons and high uncertainty, in 
which case human judgment is unlikely to improve AIML-driven models. In between these 
two extremes, a moderate degree of reliance on the human judgmental component in 
human-AIML collaboration will likely result in the best predictive performance.

Our findings can be extrapolated to managing the demand instability resulting from the 
COVID-19 pandemic. In some markets, such as tourism, sales dropped to levels that had 
previously been unknown. In other markets, such as grocery stores, demand outweighed 
products on hand. Because we had never seen the impact of a global pandemic on demand, 
human forecasters who relied on prior knowledge and experience often made poor fore
casts. Human thinking may not be fast enough to incorporate new and anomalous infor
mation, and models rely heavily on previous behavior [68]. Therefore, our research 
proposes the use of AIML automation to create forecasts based on information about 
anomalous situations. Human forecasters needed knowledge of the expected impact of 
the virus to make quick adjustments to the AIML system to accurately predict demand in 
the second wave of COVID-19. In this scenario, the positive effect of human-AIML 
collaboration on forecast accuracy is enhanced until augmentation is again required. In 
conclusion, we suggest that the richness of contextual knowledge associated with human 
learning ensures more accurate predictions. By establishing the interdependences between 
humans and AIML, we show that contextual data complement historical data and enable 
a more reliable collaboration for long-term forecast horizons.

Figure 2. The level of human intervention in Human-AIML collaboration in predictions. Abbreviations: 
AIML, artificial intelligence/machine learning.
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Managerial Implications

Managers should be aware that the implementation of AIML-driven systems requires 
a profound understanding of the context in which AIML is applied. Some AIML applications 
assume that adapting to the context can be done by the AIML system itself. But this can result 
in unexpected biases and undesirable consequences. To obtain quality performance, contex
tual data that describe how humans and AIML make decisions together are essential.

The difficulties inherent in generating predictions in cases of uncertainty, such as in the 
case of demand forecasting, have always been a focus of attention for supply chain managers 
and solutions vendors, who have progressed toward using advanced and highly sophisti
cated algorithms that promise to dispense with the singularities of uncertainty. Our research 
may help to improve their AIML predictive analytics by demonstrating that the key issues 
relate not only to the configuration of the algorithm but also to how it is adaptively applied 
and integrated with human expertise in different contexts to reach the best performance.

Another important managerial implication relates to the different levels of collaboration 
in supply chain decision-making. Collaboration between supply chain actors to establish 
greater levels of performance in demand predictive analytics has been a long-standing 
practice. However, the new trends of incorporating AIML-driven algorithms, applied to 
both forecasting demand and lead times, as well as their contextualization based on supply 
chain operations, can benefit from this research.

This research also has implications for the levels of efficiency that managers can expect when 
AI technology is introduced to digitize business processes. In this instance, forecasting repre
sents one of the most popular tasks in which AIML is being used. This is due primarily to the 
broad availability of historical demand data and the need to make effective decisions associated 
with production and distribution. In addition, given how expensive an AIML algorithm can be 
to implement and scale up, managers often expect to extract high returns on investment. 
However, our findings suggest that managers who implement AIML algorithms should temper 
these expectations. Since predictive performance is highly context-dependent, expert fore
casters should consistently account for factors that define a particular forecasting environment 
in terms of product features and the characteristics that define the context of the decisions to be 
made after the forecasting is generated. The same recipe cannot be used for all forecasting 
circumstances; large investments in AIML implementation may not deliver the desired results.

Limitations and Future Research Directions

Our study is subject to several limitations that offer opportunities for future research. First, 
although the field experiment underlying our study has the advantage of offering a better 
understanding of the relationship between human-AIML collective intelligence and perfor
mance by controlling for sources of extraneous variance and ensuring consistent definitions and 
measurements, additional studies in alternative industries could further generalize our findings.

Second, the AIML algorithm used in the field experiment is specific to the task of 
demand prediction. There is an ample variety of AIML-based algorithms and AI-driven 
technologies applied to multiple functions in a company for which the insights from our 
study may not hold. Thus, our findings should be interpreted with caution since they have 
been tested in the specific domain of demand forecasting.
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Third, to ensure the reliability and independent condition of the experimental analysis, our 
research focuses only on how human intervention affects the predictive performance of human- 
AIML collaboration for a limited demand forecasting outcome. This focus did not enable us to 
empirically analyze potential longitudinal effects that may emerge when humans and AIML 
learn from each other over time. For example, as previous studies suggest [83], it will be 
important to understand how human trust variations related to AIML prediction influence the 
predictive performance of human-AIML collaboration. For example, understanding how per
formance varies ranging from an initially fragile interaction, based on a lack of transparency in 
AIML prediction or algorithm aversion, to a deep understanding of the value provided by the 
AIML model, could be insightful.

Fourth, due to our study’s scope and our resource limitations, only three human-AIML 
decision-making structures are addressed in our research. The implications of different 
scenarios and other ways to operationalize human-AIML collaboration should be explored.

Finally, although we propose two important characteristics of predictions (uncertainty and 
time horizon) to analyze the influence of the context on human-AIML collaboration, other 
studies could examine alternative influence factors related to human cognition (e.g., creativ
ity, common sense, introspection). Another avenue for future research may be to examine in 
more depth the implications of human-AIML collaboration for other types of organizational 
outcomes, such as penalty-based versus reward-based consequences or trust in AI. While the 
current literature recognizes the potential benefits of human-AIML collaboration in these 
contexts, more research is needed to comprehensively study these variables [61].

Conclusions

AI and humans are growingly seen as highly complementary in terms of their capabilities. 
However, there is still a lack of know-how in making the most of this collaboration. To 
address this issue, we investigate the role of human intervention in AIML-driven prediction 
and show that the uncertainty and the time horizon of the prediction determine the forecast 
accuracy for three different types of collaboration: automation, adjustable automation, and 
augmentation. As a result of this work, we propose a framework that explains the level of 
human intervention required in human-AIML collaboration, extending the knowledge of 
how the phenomenon of AIML is related to organizational design. Specifically, it shows that 
human intervention complements AIML-driven forecasts most effectively when predictions 
are associated with long time horizons and low uncertainty, whereas too much reliance on 
human intervention is likely to be detrimental in prediction with high uncertainty and short 
time horizons. In between these two extremes, a moderate degree of reliance on the human 
intervention in human-AIML collaboration will likely result in the best predictive 
performance.
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